彭济根;徐宗本
本文对一类非线性算子半群————Lipschitz算子半群的渐近性质进行研究,刻划了非线性Lipschitz算子半群所具有的基本渐近性质(这些性质与线性算子半群所具有的基本渐近性质相一致),证明了作为线性算子对数范数的非线性推广,Dahlquist数能用于刻划非线性Lipschitz算子半群的渐近性质.为克服Dahlquist数只对Lips-chitz算子有定义的缺点,本文引入一个全新的特征数:广义 Dahlquist数,并证明广义Dahlquist数比Dahlquist数能更为精确地刻划Lipschitz算子半群的渐近性质.作为应用,得到关于 Hopfield型神经网络全局指数稳定性的一个新结果.