管训贵
设$m,n,L$为正整数,本文证明了:如果m<n≤m+Lmε, ε∈(0,1),且m>(123789L√L)1/1-ε,或j>10.25×1012log4(2(L+1)(123789L√L)1/1-ε,则Pell方程组$x^{2}-(m^{2}-1)y^{2}=z^{2}-(n^{2}-1)y^{2}=1$ 的正整数解满足$1≤k\leq\delta L^{2}$,这里$\delta\in[\frac{1}{2}(123787L\sqrt{L})^{\frac{1}{\varepsilon-1}},1]$,以及$$y=\frac{(m+\sqrt{m^{2}{-}1})^{j}{-}(m{-}\sqrt{m^{2}{-}1})^{j}}{2\sqrt{m^{2}{-}1}}=\frac{(n{+}\sqrt{n^{2}{-}1})^{k}{-}(n{-}\sqrt{n^{2}{-}1})^{k}}{2\sqrt{n^{2}{-}1}},$$且$j=k=1$或$k+2\leq j<\frac{1}{3}(5-2\varepsilon)k$,$2\,|\,(j+k)$, $k>\frac{3}{1-\varepsilon}$,并改进了文[Proc. Amer.Math. Soc., 2015, {\bf 143}(11): 4685-4693]的结果.