In this paper, some new classes of n-cycle permutations of the form xrh(xs) over finite fields are presented, which are the further study on a recent work of Chen, Wang and Zhu. In addition, based on some detailed discussions, four interesting problems are proposed.
Zhi Lin ZHANG, Ping Zhi YUAN.
Further Results on n-Cycle Permutations. Acta Mathematica Sinica, Chinese Series, 2023, 66(1): 95-104 https://doi.org/10.12386/A20210088
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Akbary A., Ghioca D., Wang Q., On constructing permutations of finite fields, Finite Fields Appl., 2011, 17:51-67. [2] Charpin P., Mesnager S., Sarkar S., Dickson polynomials that are involutions. In:Contemporary Developments in Finite Fields and Applications, Hachensach. NJ:World Science, 2016, 22-47. [3] Charpin P., Mesnager S., Sarkar S., Involutions over the Galois field F2n, IEEE Trans. Inf. Theory, 2016, 62(4):2266-2276. [4] Chen Y. T., Wang L. Q., Zhu S. X., On the constructions of n-cycle permutations, Finite Fields Appl., 2021, No.101847, 25 pp. [5] Coulter R. S., Mesnager S., Bent functions from involutions over F2n, IEEE Trans. Inf. Theory, 2018, 64(4):2979-2986. [6] Dickson L. E., History of the Theory of Numbers, Vol. 3, Carnegie Institute, Washington, D. C., 1923, Dover, New York, 2005, MR0245501. [7] Dickson L. E., The analytic representation of substitutions on a power of prime number of letters with a discussion of the linear group, Ann. Math., 1896/1897, 11:65-120. [8] Dickson L. E., Linear Groups with an Exposition of the Galois Field Theory, New York:Dover, 1958. [9] Ding C. S., Yuan J., A family of skew Hadamard difference sets, J. Comb. Theory, Ser. A, 2006, 113:1526-1535. [10] Gupta R., Sharma R. K., Some new classes of permutation trinomials over finite fields with even characteristic, Finite Fields Appl., 2016, 41:89-96. [11] Hou X. D., Permutation polynomials over finite fields-A survey of recent advances, Finite Fields Appl., 2015, 32:82-119. [12] Hou X. D., A survey of permutation binomials and trinomials over finite fields, In:Topics in Finite Fields Contemp. Math., Vol. 632, Amer. Math. Soc., Providence, RI, 2015, 177-191. [13] Niu T., Li K., Qu L., et al., New constructions of involutions over finite fields, Cryptogr. Commun., 2020, 12:165-185. [14] Laigle-Chapuy Y., Permutation polynomials and applications to coding theory, Finite Fields Appl., 2007, 13:59-70. [15] Lidl R., Niederreiter H., Finite Fields, 2nd Ed., Cambridge Univ. Press, Cambridge, 1997. [16] Liu X. P., Chen Y., Xu Y. G., et al., Triple-cycle permutations over finite fields of characteristic two, Int. J. Found. Comput. Sci., 2019, 30(2):275-292. [17] Wu M. N., Li C. J., Wang Z. L., Characterizations and constructions of triple-cycle permutations of the form xrh(xs), Des. Codes Cryptogr., 2020, 88(10):2119-2132. [18] Rivest R. L., Shamir A., Adelman L. M., A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 1978, 21:120-126. [19] Schwenk J., Huber K., Public key encryption and digital signatures based on permutation polynomials, Electron. Lett., 1998, 34:759-760. [20] Yuan P. Z., Ding C. S., Further results on permutation polynomials over finite fields, Finite Fields Appl., 2014, 27:88-103. [21] Yuan P. Z., Ding C. S., Permutation polynomials over finite fields from a powerful lemma, Finite Fields Appl., 2011, 17:560-574. [22] Yuan P. Z., Ding C. S., Permutation polynomials of the form L(x)=S2ka + S2kb over Fq3k, Finite Fields Appl., 2014, 29:106-117. [23] Wan D. Q., Lidl R., Permutation polynomials of the form xrf(xq-1/d) and their group structure, Mh. Math., 1991, 112(2):149-163. [24] Zheng D., Yuan M., Li N., et al., Constructions of involutions over finite fields, IEEE Trans. Inf. Theory, 2019, 65(12):7876-7883. [25] Zieve M. E., Some families of permutation polynomials over finite fields, Int. J. Number Theory, 2008, 4:851-857. [26] Zieve M. E., Classes of permutation polynomials based on cyclotomy and an additive analogue, In:Additive Number Theory, Springer, New York, 2010, 355-361.