陈红斌;邸双亮
本文应用奇异点理论,在g(x)为凹(凸)型函数时,给出周期系统(?)+a(t)g(x)=h(t)整体等价于Whitney意义下的尖点映射的结果.精确地说,算子Fx(t)=(?)+a(t)g(x(t))的奇异值集F(∑)为单连通超曲面并且将C[0,1]分成两个连通分支A1和A3,使得:(1)对周期为1的连续函数p(t)∈A1有唯一解.(2)对周期为1的连续函数p(t)∈A3恰有三个周期解.进一步,尖点集C的像集F(C)是C[0,1]中的,余维数等于2的子流形.对p∈F(C)有唯一解,而对p(t)∈F(∑)\F(C)恰有两个周期解.