中国科学院数学与系统科学研究院期刊网

15 January 1958, Volume 8 Issue 1
    

  • Select all
    |
    论文
  • Acta Mathematica Sinica, Chinese Series. 1958, 8(1): 1-11. https://doi.org/10.12386/A1958sxxb0001
    Abstract ( )   Knowledge map   Save
    Let ψ(n)be Euler function,σ(n)denote the sum of divisors of n and d(n)be the divisor function.In this paper we prove the following four theorems.Theorem 1.For any given sequence of κ non-negative numbers α_1,…,α_κand ε>0,there exists a prime number p such that(?) (1)There exist positive constants с-0(α,ε)and Х_0(α,ε)such that the numberof primes р satisfying(1)in the interval 1<р≤x is greater than(?)Theorem 2 is obtained from Theorem 1 by replacing the letters ψ by σ,с_0 by с-1 and Х_0 by Х_1.Theorem 3.For any given natural number к,there exists a constant γdepending on κ only such that for any given sequence of κ+1 positive integersα_0,α-1,…,α_κ,there exists a prime number р,such that (?) (2)There exist positive constant с_2(α)and Х_2(α)such that the number ofprimes р satisfying(2)in the interval 1≤р≤x is greater than(?)Theorem 4.For any given sequence of κ numbers α_1,…,α_κ,where α_i=0or +∞(1≤i≤κ),there exists an infinite sequence of prime numbers{р_j}(j=1,2,…)such that(?)These theorems improve some results of the author,Schinzel,andShao.The proof of these theorems depends on the followingFundamental Lemma.Let(?)be given natural numbers,where q_(μυ)(0≤μ≤κ,1≤υ≤t_μ)are prime num-bers greater than κ+1 and relatively prime in pairs.If x>Z>(m_0m_1…m_κ)~2,and N_z(x)denote the number of positive solu-tions(р,x_0,x_1…,x_κ)of the system of equations(?)satisfying the conditions(?)where р and р′denote primes,than there exist positive constants с_3,Х_3 depen-dent only on m_i,and α,dependent only on κ such that(?)If x>Z>(m_0…m_κ)~2,λ is a given positive number in the interval 1≤λ≤≤(m_0…m_κ)~2 satisfying(λ,m_0…m_κ)=1 and р_1<р_2<…<р_r≤Z are all primenumbers that do not divide m_0…m_κ and do not exceed Z,and if α_(ij)(1≤i≤≤r,1≤j≤κ+1)are given positive numbers satisfying the conditions 1≤α_(ij)<<р_i and j_≠j_2 impries α_(ij_1)≠α_(ij_2),then we can define M_z(x)as the numberof primes р satisfying the conditions1<р≤x,р≡λ(mod(m_0…m_κ)~2),р(?)α_(ij)(mod р_i)(1≤i≤r,1≤j≤κ+1).Fundamental Lemma obviously follows from the following two lemmas.Lemma 1.There exist α_(ij) and λ such that M_z(x)≤N_z(x).Lemma 2.There exist positive constants с_4,Х_4,dependent only on m_i,and positive constant β,dependent only on κ,such that(?)for any given λ and α_(ij).The proof of Lemma 2 depends essentially on the methods of Линник andRe(?)yi.
  • Acta Mathematica Sinica, Chinese Series. 1958, 8(1): 12-22. https://doi.org/10.12386/A1958sxxb0002
    Abstract ( )   Knowledge map   Save
    Let the function(?)with real coefficients α_υ~((κ))be regular in |z|<1,and be such that f_κ(z)mapsthe circle |z|=γ into α contour which passess through the real axles in exactly2κ points for every γ in the interval(?).Denote thefamily of all such functions by Т_γ~κ,and write Т_γ for Т_γ~1.Any function f_κ(z)of the subclass T_γ~κ of T_γ~κ,if is such that for each γ in 1-δ<γ<1,the radius vector(?)turns continuously in the counterclockwise direction and makes κ complete revolutions as θ varies from 0 to 2π.We prove in the present note that any f_κ(z)of T_γ~κ can be represented inthe form(?)with an increasing function α(θ)satisfying(?).By means of thisformula,we establish the following:Theorem.If f_κ(z)∈Τ_γ~κ,then(?)All these estimates are precise.A function(?),with real coeffi-cients is said to be belonging to the subclass T_γ~κ(ρ,р),if there exists αρ(0<<ρ<1)such that(?)The coefficients of such a function f_(κ,р)(z)satisfy the inequality(?)This estimate is precise.The result holds good even when α_(κ+рn)~((κ))(ρ,р)are notall real,if f_(κ,р)(z)is κ-valent and(?)
  • Acta Mathematica Sinica, Chinese Series. 1958, 8(1): 23-35. https://doi.org/10.12386/A1958sxxb0003
    Abstract ( )   Knowledge map   Save
    Es sollen die algebraischen Grenzzyklen zweiten Grades reeller Differen-tialgleichung(?)untersucht werden.Existenzsatz Ⅰ Notwendig und hinreichend ftir die Existenz des algebrai-schen Grenzzyklus zweiten Grades der Differentialgleichung(E)_2 ist die Existenzeiner Transformation(?) (1)derart dass(E)_2 durch(1)in die Differentialgleichung(?) (E)′_2ǘbergefǘhrt werden kann,wobeic~2>a~2+b~2 (2)a≠0 (3)Existenzsatz Ⅱ Notwendig und hinreichend ffir die Existenz des algebrai-schen Grenzzyklus zweiten Grades der Differentialgleichung (E)_2 ist die Existenzeiner orthogonalen Transformation(?) (4)derart dass,(E)_2 durch(4)in die Differentialgleichung(?) (E)″_2 ǘbergefǘhrt werden kann,wobeiλ>0,μ>0 (5)(?) (6)aκ_2+bκ_1≠0. (7)Einzigkeitsatz ⅠEs sei C ein algebraischer Grenzzyklus zweiten Grades derDifferentialgleichung(E)_2.Dann ist C die einzige periodische L(?)sung derDifferentialgleichung(E)_2.Einzigkeitsatz ⅡEs sei C ein algebraischer Grenzzyklus zweiten Gradesder Differentialgleichung(E)_2.Dann ist die topologische Struktur der Integra-lkurven der Differentialgleichung(E)_2 nach die Summe der Indizes der sin-gul(?)ren Stellen von(E)_2 eindeutig bestimmt,und zwar gibt es drei follgendenF(?)lle:(i)Die Summe ist gleich 0(Fig.1)(ii)Die Summe ist gleich 1(Fig.2)(iii)Die Summe ist gleich 2(Fig.3).(?)Stabilit(?)tsatz ⅠDie Multiplizit(?)t des algebraischen Grenzzyklus zweitenGrades der Differentialgleichung(E)_2 ist gleich Einheit.Insbesondere gibt eskeine halbstabilen algebraischen Grenzzyklen zweiten Grades der Differentialg-leichung(E)_2.Stabilit(?)tsatz ⅡEs sei C ein algebraischer Grenzzyklus zweiten Grades derDifferentialgleichung(E)_2.Dann ist die topologische Struktur der Integralkur-vender Differentialgleichung(E)_2 nach die Andronov-Pontrjaginschen Meinungstabil.
  • Acta Mathematica Sinica, Chinese Series. 1958, 8(1): 36-52. https://doi.org/10.12386/A1958sxxb0004
    Abstract ( )   Knowledge map   Save
    Par espace unitaire nous entendons toujours un espace vectoriel L sur lecorps de nombres complexes K danslequel une forme hermitienne(x,y,quin'est pas necéssairement définie positiv,est défine;par une anti-involution,une application x→(?)de(?)sur lui-même vérifia(?)Nous dirons que l'espace unitaire admette une anti-involution,désigéncetespace par UR,lorsque les deux structures définies ci-déssus sont liées parla relation suivante(?)Le groupe projectif de tous les automorphisms d'un espace UR est ungroupe de Lie réel classique,c'est-à-dire un groupe de Lie simple réel apparte-nant aux 4 grandes classes;sauf certains cas trivials,ce sont tousles groupesclassiques réels.(i)ι=ε=1,le groupe pseudo-euclidean;(ii)-ι=ε=1,le groupe pse-udo-unitaire quaternionique;(iii)ι=-ε=1,le groupe symplectique réel;(iv)ι=ε=-1,le groupe réel simple du type D.Nous nous proposons ici d'étudier la classification des transformations réel symétriques ou réel symétriques gauche,ce sont des transformations linéairescommutant avec l'anti-involution donnée.Nous savons déjà que darts espaceunitaire,une transformation symétrique ou symétrique gauche est classifiée parses diviseurs élémentaires en général avec signatures.Par la méthode analo-que mais plus precise,nous trouvons aussi,dans espace UR,comme invariantscompléts ces diviseurs élémentaires signés.Nous pouvons donc annoncer leTHEOREME Pour que deux transformations linéaires réeles symétriques(symétriques gauche)soient équivalentes darts l'éspace UR, il faut et it suffitqu'elles soient équivalentes dans l'espace unitaire.Les diviseurs élémentaires d'une telle transformation linéaire ne sont pasarbitraires,ils vérifient cependent certaines conditions.Désignons par+(t-α)~mun diviseur élémentaire signé et-(t-α)~m,le même diviseur dont la signatureest contraire à celle de premier,nous avons alors une Iiste suivante indiquantles formes générales des diviseurs qui doivent apparaitre simultanement.(Ⅰ)Pour la transformation linéaire réele symétrique:(i)(t-α)~m,(t-(?))~m,+(t-α)~r;(ii)(t-α)~m,(t-α)~m,(t-(?))~m,(t-(?))~m,+(t-α)~r,+(t-α)~r;(iii)(t-α)~m,(t-α)~m,(t-(?))~m,(t-(?))~m,(t-α)~r,(t-α)~r;(iv)(t-α)~m,(t-(?))~m,(t- α)~r,(t-α)~r;où α est un hombre réel et α, non réel.(Ⅱ)Pour la transformation linéaire réele symétrique gauche:Nous avons dans tousles cas,les formes générales(t-α)~m,(t-(?))~m,(t+α)~m,(t+(?))~m,lorsque α n'est ni réel ni imaginaire.Pour les racines réeles ou ima-ginaires nous avons la liste suivante(i)(?)(ii)(?)(iii)(?)(iv)(?)où α,β sont des hombres réels.En terminant nous signalons les applications à l'étude des automorphismsde groupes simples réels et surtout à la détermination des espaces symétriquesriemanniens correspondants qui féront l'objet d'un mémoire ultérieur.
  • Acta Mathematica Sinica, Chinese Series. 1958, 8(1): 53-78. https://doi.org/10.12386/A1958sxxb0005
    Abstract ( )   Knowledge map   Save
    A more detailed English abstract of this paper has been published in ScienceRecord,1(1957),pp.31—34.
  • Acta Mathematica Sinica, Chinese Series. 1958, 8(1): 79-94. https://doi.org/10.12386/A1958sxxb0006
    Abstract ( )   Knowledge map   Save
    In what follows all complexes will be understobd to be euclidean finitesimplicial complexes.Let K be a complex with space K and R~m a euclidean space of dimensionm.A topological mapping T:(?)→R~m will be called a linear imbedding of K inR~m if T is linear on each σ∈K.If T:(?)→R~m is a linear imbedding of a certainsimplicial subdivision K′of K in R~m,then T will be called a semi-linear im-bedding of K in R~m through the subdivision K′.A continuous mapping T:K→R~m will be called a linear pseudo-imbedding of K in R~m if the following conditionsare satisfied:1°.T is linear on each σ∈K,2°.T(σ)is a non-degenerate simplex ofsame dimension as σ∈K if dim.σ≤m,and 3°.for any pair a,σ∈K withdim σ+dim τ≤m,T(σ)and T(τ)are in general position.If T:(?)→R~m is alinear pseudo-imbedding of a certain simplicial subdivision K′of K in R~m thenT will be called a semi-linear pseudo-imbedding of K in R~m through the sub-division K′.For any K let(?)be the subcomplex of the product complex K×K formedof all cells σ×τ for which σ∈ K are disjoint,i.e.,having no vertices incommon.Let us identify each pair σ×τ and τ×σ of(?)into a single cell σ*τ(or σ*τ),then by orienting σ*τ as σ×τ,we have for the,complex K formedof all cells σ*τ,σ,τ∈K disjoint:(?) (1)(?) (2)(?) (3)The complex(?)is naturally a two-sheeted covering complex of K and wemay thus define for the pair((?),K),according to the general theory of P.A.Smith about periodic transformations,a system of classes Φ~m(K)∈H~m(K, I_((m))),m≥0,where I_((m))is the group Of integers I for m even and the group I_2 ofintegers mod 2 for m odd.In the same way,for any Hausdorff space X let(?)be the subspace of the product space X×X consisting of all points(x,y)forwhich x,y∈X and x≠y.By identifying each pair(x,y)and(y,x)in(?)weget a space X of which(?)is naturally a two-sheeted covering space.Withrespect to the pair((?),X)we may thus also define,by the theory of Smith,a system of classes Φ~m(X)∈ H~m(X,I_((m))),m≥0,which are,by definition,topological invariants of X(H denotes singular homology).As remarked in[2],if X=(?),then H~m(K,G)are canonically isomorphic to H~m(X,G)andunder these isomorphisms,Φ~m(K)correspond to Φ~m(X)so that we may writeΦ~m(K)= Φ~m(X)legitimately.Now let T:(?)→R~m be any semi-linear pseudo-imbedding of K in R~m whichalways exists.For any σ∈ K,T_σ is then a chain of R~m.Take a fixed orientationof R~m and let φ denote the index of intersection in this oriented R~m and ρ(m)either the identity or the reduction mod 2 according as m be even or odd.Thenowing to (2),(?)is unambiguously well defined for any σ*τ∈K of dimension m and gives riseto a cochain ψ_Τ of dimension m in K with coefficient group I_((m)).As provedin[1],ψ_Τ is always a cocycle whose class is independent of the semi-linearpseudo-imbedding T as well as the orientation of R~m chosen and coincides inreality to the class Φ~m(K)=Φ~m(?).It has also been proved that Φ~m(K)=0(or Φ~m(X)=0 for any space X)is a necessary condition for K(or X)to besemi-linearly(or topologically)imbeddable in R~m The purpose of the presentpaper is to prove the converse in the extreme case m=2n where n==dim K>2.In fact,we have the following. Theorem.For a finite simplicial complex K of dimension n>2 to be semi-linearly imbeddable in R~(2n)it is necessary and sufficient that Φ~(2n)(K)=0.We have also the following.Corollary.A finite simplicial complex K of dimension n>2 is semi-linearlyimbeddable in R~(2n)in each of the following four cases:1°.H_n(K,mod 2)=0.2°.H_n(K)=0.3°.K is an irreducibly closed complexor 4°.each(n-1)-dimensional simplex of K is the face of at most twon-dimensional simplexes of K.The proof of the sufficiency part in our theorem depends on the followingthree constructions.A.Tube construction.Let C be a differentiable simple arc in R~m with end points a_0,a_1.Let L_i~n(i=0,1)be two n-dimensional linear subspaces of R~m orthogonal to C at a_i,and S_i~n-1 the(n-1)-dimensional sphere of center a_i and radius ε>0 in L_i~n.Suppose that S_i~(n-1)have been oriented.
  • Acta Mathematica Sinica, Chinese Series. 1958, 8(1): 95-101. https://doi.org/10.12386/A1958sxxb0007
    Abstract ( )   Knowledge map   Save
    In dieser Note,zeigen wir nochmal einige der Messbarkeit analoge Sātze,betreffend die Bairesche Eigenschaft.Die in[5]eingeführte Begriffe—BairescheHülle und Kern—spielen eine Rolle.Bezeichnen wir mit(?)die Gesamtheit derbis auf eine Menge von erster Kategorie endlichwertigen Funktionen,die in[0,1]definiert sind,und Bairesche Eigenschaft haben;und mit(?)die Gesam-their der Funktionen,die bis auf eine Menge yon erster Kategorie Null sind.Dass der Quotientenraum(?)/(?)ein stetiger,im Birkhoffschen Sinne bedingt voll-stāndiger,Rieszscher Raum ist,ist bewiesen.Die Beziehung zwischen derBaireschen Eigenschaft einer Funktion und der ihrer Ordinatenmenge,eineErweiterung des Begriffes Bairescher Eigenschaft sind betrachtet.Berichtigung:Der vereinfachter Beweis eines Sierpi(?)skischen Satzes,an-gekündigt in[5],ist nicht richtig.
  • Acta Mathematica Sinica, Chinese Series. 1958, 8(1): 102-131. https://doi.org/10.12386/A1958sxxb0008
    Abstract ( )   Knowledge map   Save
    The homotopy group,∏_n(x),(n≥2)of a given arcwise connected polyhedronis an abelian group,hence may be considered as a direct sum,∑ Ζ_(p~r),of cyclicgroups of prime power order.As a consequence we have a function,φ_n,definedon powers of primes such that φ_n(p~r)is the number of copies of Ζ_(p~r)occurringin H_n(x)=∑ Ζ_(p~r).No doubt φ_n(p~r)is an invariant of homotopy type.Thoughφ_n(p~r)is theoretically determined if the space is given,but up to this time there is still no definite method to produce such invariants.Since there is atopological space whose homotopy groups may be arbitrary assigned,there mustbe a great deal of integer valued invariants of homotopy type.This papercontains detail exposition of results announced in two short notes published inScience Record.By simple A_n~3-polyhedra we mean those whose cohomology groupsH~(n+r)(r=1,2,3)may be written as a direct sum H_1~(n+r)+H_2~(n+r),where H_1~(n+r)is the direct sum of q_r(≥0)cyclic groups of the same order,2~(p_r),and H_2~(n+r)isthe direct sum of a free groups(if any)and cyclic groups of odd prime powerorders(if any).As a result of theory of proper isomorphisms block invariants,relative block invariants,characteristic polynomials,characteristic coefficients,Φ_1-torsions and Φ_2-torsions are introduced to constitute a complete and inde-pendent system of integer valued homotopy invariants of simple A_n~3-polyhedra(n>3)besides Betti numbers and torsions.To each Of the above invariants,τ,say,there is a normal simple A_n~3-polyhedron, N_τ.If χ is a simple A_n~3-poly-hedron,then it is proved that∏_8(x)=∑_τ∏_s(N_τ),if s<2n-1,(1)where ∑ denotes direct sum and τ∏_r(N_τ)is a direct sum ∏_r(N_τ)+…+∏_r(N_τ)ofτ copies of ∏_r(N_τ).This shows relations between φ_s(p~r)(x)and τ's if s<2n-1.In other words,φ_s(p~r)(x)is expressed as a linear expression of τ's with co-efficients φ_s(p~r)(N_τ)if s<2n-1.In case s≥2n-1,then in φ_s(p~r)quadraticforms of τ's or other terms are expected to enter.These phenomena are stillobscure.The formula(1)shows the importance to compute homotopy groups of∏_s(N_τ).But ∏_(n+2)(N_τ)are easily computed for all τ.The method used here is also effective for general A_n~3-polyhedra if n>3.When n=3,we must classify A_n~3-cohomology rings under proper automorphismspreserving the normal forms of γ,γ_(n+1),Φ_1 and Φ_2.This needs further study infuture.FOOTNOTES1)In case H_r(x)(r=1,…)are of finite type,then φ_n(p~r)is finite fordefinite n,r and p.See[20].2)To a characteristic polynomial and one of its corresponding characteristiccoefficient correspond one invariant and one normal polyhedron.3)See[9]and[14].
  • Acta Mathematica Sinica, Chinese Series. 1958, 8(1): 132-145. https://doi.org/10.12386/A1958sxxb0009
    Abstract ( )   Knowledge map   Save
    ~~
  • Acta Mathematica Sinica, Chinese Series. 1958, 8(1): 146-152. https://doi.org/10.12386/A1958sxxb0010
    Abstract ( )   Knowledge map   Save
    An English version of this paper has been published in Scientia Sinica.