Da Qing WAN, Jun ZHANG

Counting zeros of polynomials over finite fields is one of the most important topics in arithmetic algebraic geometry. In this paper, we consider the problem for complete symmetric polynomials. The homogeneous complete symmetric polynomial of degree $m$ in the $k$-variables $\{x_1,x_2,\ldots,x_k\}$ is defined to be $h_m(x_1,x_2,\ldots$, $x_k):=\sum_{1\leq i_1\leq i_2\leq \cdots \leq i_m\leq k}x_{i_1}x_{i_2}\cdots x_{i_m}.$ A complete symmetric polynomial of degree $m$ over $\mathbb{F}$_{q} in the $k$-variables $\{x_1,x_2,\ldots,x_k\}$ is defined to be $h(x_1,\ldots$, $x_k):=\sum_{e=0}^m a_eh_e(x_1,x_2,\ldots$, $x_k),$ where $a_e\in$ $\mathbb{F}$_{q} and $a_m\not=0$. Let $N_q(h):= \#\{(x_1,\ldots, x_k)\in$ $\mathbb{F}$_{q} |$ h(x_1,\ldots, x_k)=0\}$ denote the number of $\mathbb{F}$_{q}-rational points on the affine hypersurface defined by $h(x_1,\ldots, x_k)=0.$ In this paper, we improve the bounds given in [J. Zhang and D. Wan, "Rational points on complete symmetric hypersurfaces over finite fields", *Discrete Mathematics*, 343(11): 112072, 2020] and [D. Wan and J. Zhang, "Complete symmetric polynomials over finite fields have many rational zeros" *Scientia Sinica Mathematica*, 51(10): 1677-1684, 2021]. Explicitly, we obtain the following new bounds:

(1) Let $h(x_1,\ldots, x_k)$ be a complete symmetric polynomial in $k\geq 3$ variables over $\mathbb{F}$_{q} of degree $m$ with $1\leq m\leq q-2$. If $q$ is odd, then $N_q(h)\geq\!\frac{\lceil \frac{q-1}{m+1}\rceil}{q-\lceil \frac{q-1}{m+1}\rceil}(q-m-1)q^{k-2}.$

(2) Let $h(x_1,\ldots, x_k)$ be a complete symmetric polynomial in $k\geq 4$ variables over $\mathbb{F}$_{q} of degree $m$ with $1\leq m\leq q-2$. If $q$ is even, then $N_q(h)\geq\!\frac{\lceil \frac{q-1}{m+1}\rceil}{q-\lceil \frac{q-1}{m+1}\rceil}(q-\frac{m+1}{2})(q-1)q^{k-3}.$\newline Note that our new bounds roughly improve the bounds mentioned in the above two papers by the factor $\frac{q^2}{6m}$ for small degree $m$.