The Mean of Divisor Function Defined on Polynomial Rings over Finite Fields over a Sequence of Quadratic Polynomials

Tong Wei, Zhishan Yang

Acta Mathematica Sinica, Chinese Series ›› 2025, Vol. 68 ›› Issue (2) : 268-277.

PDF(414 KB)
PDF(414 KB)
Acta Mathematica Sinica, Chinese Series ›› 2025, Vol. 68 ›› Issue (2) : 268-277. DOI: 10.12386/A20230144

The Mean of Divisor Function Defined on Polynomial Rings over Finite Fields over a Sequence of Quadratic Polynomials

  • Tong Wei, Zhishan Yang
Author information +
History +

Abstract

In this paper, we use Dudek's [Bull.Aust.Math.Soc., 2019, 99(1): 1-9] method to study the mean of divisor function defined on polynomial rings over finite fields over a quadratic polynomial sequence, and comparing the mean of divisor function defined on integer ring over quadratic arithmetic sequence, we find that the two are the same from the perspective of order.

Key words

polynomial rings over finite fields / divisor function / mean value

Cite this article

Download Citations
Tong Wei , Zhishan Yang. The Mean of Divisor Function Defined on Polynomial Rings over Finite Fields over a Sequence of Quadratic Polynomials. Acta Mathematica Sinica, Chinese Series, 2025, 68(2): 268-277 https://doi.org/10.12386/A20230144

References

[1] Andrade J. C., Bary-Soroker L., Rudnick Z., Shifted convolution and the Titchmarsh divisor problem over Fq[t], the Royal Society, 2015, 373(2040).
[2] Bellman R., Ramanujan sums and the average value of arithmetic functions, Duke Math. J., 1950, 17(2): 159-168.
[3] Deshouillers J. M., Iwaniec H., An additive divisor problem, J. London Math. Soc. (2), 1982, 26(1): 1-14.
[4] Dudek A. W., On the number of divisors of n2-1, Bull. Aust. Math. Soc., 2016, 93(2): 194-198.
[5] Dudek A. W., Pańkowski L., Scharaschkin V., Note on the number of divisors of reducible quadratic polynomials, Bull. Aust. Math. Soc., 2019, 99(1): 1-9.
[6] Erdös P., On the sum k=1xd(f(k)), J. London Math. Soc.(1), 1952, 27(1): 7--15.
[7] Halberstam H., Four asymptotic formulae in the theory of numbers, J. London Math. Soc. (1), 1949, 24(1): 13-21.
[8] Hooley C., On the number of divisors of quadratic polynomials, Acta Math., 1963, 110(1): 97-114.
[9] Iwaniec H., Kowalski E., Analytic Number Theory, Providence: American Mathematical Society (AMS), 2004.
[10] Lapkova K., On the average number of divisors of reducible quadratic polynomials, J. Number Theory, 2017, 180(1): 710-729.
[11] McKee J., On the average number of divisors of quadratic polynomials, Math. Proc. Cambridge Philos. Soc., 1995, 117(3): 389-392.
[12] McKee J., A note on the number of divisors of quadratic polynomials, Sieve methods, exponential sums, and their applications in number theory, In: London Mathematical Society Lecture Note Series, Vol. 237, Cambridge University Press, 1997, 275-281.
[13] McKee J., The average number of divisors of an irreducible quadratic polynomial, Math. Proc. Cambridge Philos. Soc., 1999, 126(1): 17-22.
[14] Rosen M., Number Theory in Function Fields, Graduate Texts in Mathematics, Vol. 210, 2002.
[15] Scourfield E. J., The divisors of a quadratic polynomial, Proc. Glasgow Math. Soc., 1961, 5(1): 8-20.
PDF(414 KB)

106

Accesses

0

Citation

Detail

Sections
Recommended

/