李周欣;沈尧天;
考虑如下一类含临界指数的类p-Laplacian方程-div(a(|Du|~p)|Du|~(p-2)Du)=:-- |u|~(p~*-2)u+λf(x,u),u∈W_0~(1,p)(Ω),其中Ω∈R~N(N≥2)为有界光滑区域,a:R~+→R为连续函数.由于问题失去紧性,对Palais-Smale序列的分析需要一点技巧.本文利用Lions的集中紧原理,证明了相应泛函I_λ满足(PS)_c条件,再应用Clark临界点定理和亏格的性质,证明了方程无穷多解的存在性.进一步,得到当λ充分小时一个特殊的特征函数的存在性.