中国科学院数学与系统科学研究院期刊网

2006年, 第49卷, 第4期 刊出日期:2006-07-15
  

  • 全选
    |
    论文
  • 郭柏灵;杨干山;
    数学学报. 2006, 49(4): 721-736. https://doi.org/10.12386/A2006sxxb0091
    摘要 ( )   可视化   收藏
    本文引入δ-黏性上解,δ-黏性下解和δ-黏性解的概念,给出一些相关性质,利用这些性质证明取值于三维单位球面的多维Landau-Lifshitz方程的δ-黏性上解和δ-黏性下解的存在性,揭示存在两个不相交的开子集M和N,使得δ-黏性上解和δ-黏性下解在M内任一紧子集上趋于(0,1,0),在N内任一紧子集上趋于(0,-1,0).
  • 吴求先;
    数学学报. 2006, 49(4): 737-756. https://doi.org/10.12386/A2006sxxb0092
    摘要 ( )   可视化   收藏
    本文定义了管范畴上的一些算子,研究了它们的一些性质,给出了循环单列代数的Ringel-Hall代数H(T)的结构常数FML,N的一个计算公式.利用这些算子和这个公式,我们得到了其合成代数C(T)及半单模[l(?)i=1nSi](t∈Z+)在H(T)中的一些中心化子.事实上,它们是H(T)的中心元素,且是H(T)在其合成代数C(T)上代数无关的生成元.
  • 高红亚;王建普;
    数学学报. 2006, 49(4): 757-762. https://doi.org/10.12386/A2006sxxb0093
    摘要 ( )   可视化   收藏
    本文利用Hodge分解等工具,给出了保证空间映射微分的外幂可积性的一个充分条件.
  • 黄春妍;刘祖汉;
    数学学报. 2006, 49(4): 763-774. https://doi.org/10.12386/A2006sxxb0094
    摘要 ( )   可视化   收藏
    本文研究当κ很大时置于非均匀外加磁场中超导体的能量,其中外加磁场远离第一与第二临界磁场.我们得到了任意外加磁场中极小能量的渐进性态,从而解决了Sandier和Serfatv提出的猜想:极小能量与变磁场的权的形式成比例.
  • 杨宗信;陈纪修;
    数学学报. 2006, 49(4): 775-778. https://doi.org/10.12386/A2006sxxb0095
    摘要 ( )   可视化   收藏
    根据H2上的双曲距离在拟共形变换下的拟不变性,给出了K-拟共形抛物循环Fuchs群的收敛指数的估计.
  • 韩彦昌;许明;
    数学学报. 2006, 49(4): 779-790. https://doi.org/10.12386/A2006sxxb0096
    摘要 ( )   可视化   收藏
    本文在非齐型空间上证明具有Dini核条件的T1定理,获得了加权Fefferman- Stein向量值极大不等式.进一步地,在非齐型空间上得到了加权Tiebel-Lizorkin空间的T1定理.
  • 魏常果;
    数学学报. 2006, 49(4): 791-796. https://doi.org/10.12386/A2006sxxb0097
    摘要 ( )   可视化   收藏
    本文研究了环面代数(即C(T2))扩张问同态的性质.设E1和E2为环面代数通过K的本质酉扩张,φ,ψ:E1→E2为单同态,若φ,ψ在半群V(E1)及商代数上导出的映射一致,则φ与ψ是近似酉等价的.这里K为可分的无限维复Hilbert空间上的紧算子全体构成的C*-代数,V(E1)为E1的矩阵代数中投影的Murray-von Neumann等价类构成的交换半群.
  • 秦惠增;商妮娜;
    数学学报. 2006, 49(4): 797-802. https://doi.org/10.12386/A2006sxxb0098
    摘要 ( )   可视化   收藏
    通过双曲型方程的Hadamard基本解理论,将Huygens算子识别问题转化为双曲型方程的系数满足的关系,找出了更多的Huygens算子,从而推广了Stellmacher的结果,并解析了Veselov和Berest给出的一类Huygens算子与Stellmacher算子的关系.
  • 潘江敏;
    数学学报. 2006, 49(4): 803-808. https://doi.org/10.12386/A2006sxxb0099
    摘要 ( )   可视化   收藏
    设Sri(i=1,2,…,n)为秩ri的自由亚交换群,G=Sr1×Sr2…×Srn为自由亚交换群的直积,本文证明了G有检验元素的充分必要条件为ri=2(i=1,2,…,n).同时,还证明了g=(g1,g2,…,gn)为G的检验元素的充分必要条件是:gi∈S′2-1(i= 1,2,…,n),且{g1,g2,…,gn}为独立集.此外,我们给出了一类具体的检验元素.
  • 王晋茹;
    数学学报. 2006, 49(4): 809-818. https://doi.org/10.12386/A2006sxxb0100
    摘要 ( )   可视化   收藏
    本文主要考虑热传导方程uxx=ut,0≤x<1,t≥0;u(1,t)=g(t),其中边界条件g(t)为已知函数.此定解问题为一不适定问题,也就是说当边界条件有微小扰动时,将会引起解大的扰动.本文将利用多分辨率分析构造一小波解,且证明此解是适定的,并给出所定义小波解与定解问题的真正解在点态意义下的误差估计.
  • 杨敏波;沈自飞;
    数学学报. 2006, 49(4): 819-826. https://doi.org/10.12386/A2006sxxb0101
    摘要 ( )   可视化   收藏
    本文考虑一类具Hardy-Sobolve临界指数的半线性椭圆方程,通过证明局部(P.S.)条件和能量估计,运用伪指标理论得到了这类方程多解的存在性(见文[1-13]).
  • 周玲;
    数学学报. 2006, 49(4): 827-834. https://doi.org/10.12386/A2006sxxb0102
    摘要 ( )   可视化   收藏
    本文研究带齐次Dirichlet边界条件的强耦合椭圆系统,首先证明了当食饵和捕食者的扩散率足够大,或者出生率足够小时,系统不存在共存现象,并给出半平凡解存在的充分条件.然后利用Schauder不动点定理,得到强耦合的椭圆问题至少有一个正解存在的充分条件.该条件说明只要捕食者的内部竞争强,物种的交叉扩散相对弱,或者捕获率足够小,物种的交叉扩散相对弱,强耦合系统就至少有一个正解存在.
  • 王伟;
    数学学报. 2006, 49(4): 835-846. https://doi.org/10.12386/A2006sxxb0103
    摘要 ( )   可视化   收藏
    1966年,Leo Moser提出了一个基本的几何问题,即Worm Problem.该问题是指:在平面上寻找一个面积最小的(凸)区域,使得任何一条长为1的平面曲线都能够通过旋转和平移完全放入该(凸)区域之中.对于要寻找的区域是凸的情形,本文将把目前所知道的最小的上界由0.2738086降低至0.270911861.在最后一部分,我们推广了Worm Problem,并初步给出了一些相应的结果.
  • 何欣枫;何震;
    数学学报. 2006, 49(4): 847-852. https://doi.org/10.12386/A2006sxxb0104
    摘要 ( )   可视化   收藏
    利用S+型映射的拓扑度,导出了伪单调映射紧扰动的拓扑度,并讨论了该拓扑度对算子值域的应用.
  • 罗罗;史济怀;
    数学学报. 2006, 49(4): 853-856. https://doi.org/10.12386/A2006sxxb0105
    摘要 ( )   可视化   收藏
    我们研究了Cn中有界对称域Ω上不同加权Bergman空间之间的复合算子,给出了有界和紧的复合算子C(?):Lαp(Ω,dvα)→Lαq(Ω,dvβ)(0
  • 杨海涛;
    数学学报. 2006, 49(4): 857-860. https://doi.org/10.12386/A2006sxxb0106
    摘要 ( )   可视化   收藏
    本文研究Pontrjagin空间上一般算子代数弱闭和一致闭的等价条件,得到定理:设C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R)分别是Ⅱk空间上第0,Ⅰ,Ⅱa,Ⅱb,Ⅲa和Ⅲb类的算子代数,则(1)C0(U),C2a(U)或C3a(U)为一致闭(弱闭)的等价条件是U是Hibert空间G上的C*-代数(W*-代数;(2)C1(U,L,R,D,V)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间,V是闭算子,L对称闭的;(3)C2b(U,R)或C3b(U,R)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间.
  • 董卫;郭长河;张清年;时翠梅;
    数学学报. 2006, 49(4): 861-868. https://doi.org/10.12386/A2006sxxb0107
    摘要 ( )   可视化   收藏
    本文研究下列退化的logistic型p-Laplacian方程:-△Apu=a(x)|u|p-2u- b(x)|u|q-1u,x∈RN(N≥2).在对系数a(x),b(x)在无穷远处的性质加以一般限制,得出了正解唯一存在性定理.我们的结果改进了文[1]和[2]中的相应结果.
  • 刘其林;李玉祥;高洪俊;
    数学学报. 2006, 49(4): 869-882. https://doi.org/10.12386/A2006sxxb0108
    摘要 ( )   可视化   收藏
    本文讨论带Dirichlet边界条件的反应扩散方程组ut(x,t)=△u(x,t)+uα(x,t).up(0,t),vt(x,t)=△v(x,t)+uβ(x,t)vq(0,t),研究了该问题正解的爆破性质并给出爆破集及其爆破速率.
  • 陈正新;
    数学学报. 2006, 49(4): 883-892. https://doi.org/10.12386/A2006sxxb0109
    摘要 ( )   可视化   收藏
    设A为有限域上的T(2,2,2,2)型tubular代数,它是tame遗传代数A0的单点扩张,也是tame遗传代数A∞的单点余扩张.记P0为预投射A0-模集合,L∞是预内射A∞-模集合,则P0,L∞(?)mod A记T=mod A\(P0∪L∞).本文证明A的合成代数C(A)具有形为P0·J·L∞的三角分解.
  • 王晓峰;姚正安;
    数学学报. 2006, 49(4): 893-898. https://doi.org/10.12386/A2006sxxb0110
    摘要 ( )   可视化   收藏
    本文主要讨论了有界连通区域Dirichlet空间上Toeplitz算子的Fredholm性质,计算了符号在C1中的Toeplitz算子的本性谱和Fredholm指标.
  • 唐先华;周英告;
    数学学报. 2006, 49(4): 899-908. https://doi.org/10.12386/A2006sxxb0111
    摘要 ( )   可视化   收藏
    研究高维非线性泛函周期微分系统x(t)=A(t,x(t+·))x(t)+f(t,x(t@+·))周期解的存在性、唯一性和全局吸引性等问题,所获结果推广和改进已有文献中相关结果.
  • 李晓光;张健;
    数学学报. 2006, 49(4): 909-914. https://doi.org/10.12386/A2006sxxb0112
    摘要 ( )   可视化   收藏
    本文讨论了带调和势的具有临界幂的非线性Schrodinger方程,得到其爆破解在t→T(爆破时间)的L2集中率.
  • 阮其华;陈志华;
    数学学报. 2006, 49(4): 915-918. https://doi.org/10.12386/A2006sxxb0113
    摘要 ( )   可视化   收藏
    本文通过对满足Nash不等式的黎曼流形的研究,证明了对任一完备的Ricci曲率非负的n维黎曼流形,若它满足Nash不等式,且Nash常数大于最佳Nash常数,则它微分同胚于Rn.
  • 朱智伟;周作领;
    数学学报. 2006, 49(4): 919-926. https://doi.org/10.12386/A2006sxxb0114
    摘要 ( )   可视化   收藏
    设Cλ是由迭代函数系统(IFS){f1,f2}生成的对称Cantor集,其中f1(x)=λx, f2(x)=1-λ+λx,0<λ<1/2,x∈[0,1].在压缩比λ满足一定条件时,本文得到了Cλ与其自身的笛卡尔乘积Cλ×Cλ的Hausdorff中心测度的计算公式.
  • 叶耀军;
    数学学报. 2006, 49(4): 927-940. https://doi.org/10.12386/A2006sxxb0115
    摘要 ( )   可视化   收藏
    本文证明了一类半线性波动方程组Cauchy问题整体解的存在唯一性.特别地,证明了自相似解的存在唯一性.同时还得到了渐近自相似解.
  • 彭向阳;胡锡炎;张磊;
    数学学报. 2006, 49(4): 941-948. https://doi.org/10.12386/A2006sxxb0116
    摘要 ( )   可视化   收藏
    定义了M-对称矩阵集GSRn×n(M),获得了矩阵方程ATXA=B存在M-对称解的充分必要条件.解集为非空时,得到了最小范数解和给定矩阵X*最佳逼近解.
  • 姚喜妍;
    数学学报. 2006, 49(4): 949-954. https://doi.org/10.12386/A2006sxxb0117
    摘要 ( )   可视化   收藏
    设H和K为复的无限维可分Hilbert空间.本文利用算子的几何结构着重研究了Hilbert空间H(?)K上的2×2算子矩阵的逆,给出了一些有意义的结果.
  • 王立娟;廖公夫;
    数学学报. 2006, 49(4): 955-960. https://doi.org/10.12386/A2006sxxb0118
    摘要 ( )   可视化   收藏
    本文讨论3阶Feigenbaum映射限制在非游荡集上的拓扑共轭性.一方面3阶Feigenbaum映射必然产生混沌,混沌的产生使得非游荡集复杂化;另一方面3阶Feigenbaum映射又分为单谷的和非单谷的两类.利用有限型子转移,证明了对任意给定的两个满足一定条件的3阶Feigenbaum映射,限制在其非游荡集上是拓扑共轭.