黄煜;罗俊;周作领;
本文考虑闭区间上变差有界的连续映射f:I→I的局部变差增长γ(x,f)与局部拓扑熵h(x,f).将证明γ(x,f)≥h(x,f)对所有x∈I成立,并且局部变差增长映射γf(x)=γ(x,f)与局部拓扑熵映射sf(x)=h(x,f)都是上半连续的,得到一个变分原理:局部变差增长γ(x,f)与局部拓扑熵h(x,f)的上确界分别等于全局变差增长γ(f)=limn→∞1/nln Var(fn)与拓扑熵h(f).当映射f:I→I拓扑传递时,与Brin 和Katok对局部(测度)熵的讨论类似,我们证明,至多除一个不动点外,局部变差增长γ(x,f)与局部拓扑熵h(x,f)在开区间I°内恒为常值.