朱文余;孙琦;周先华
设n是一个合数,Z_n表示模n的剩余类环,r(x)∈Z_n[x]是一个首一的k(>0)次不可约多项式。本文引入n是k阶摸r(x)的Carmichael数的定义,全体这样的数记为集C_(k,r)(x),由此给出k阶Carmichael数集:C_k={∪C_(k,r)(x)|r(x)过全体Z_n上的首一k次不可约多项式}。显然C_1表示通常的Carmichael数集。作者得到了n∈C_(k,r(x))的一个充要条件,进而得到n∈C_k的一个充要条件及n∈C_2的一个更易计算的充要条件,还证明了C_1(?)C_2以及|C_2|=∞。