何伟弘;罗俊;周作领
对于:Hausdorff维数为s>0的满足开集条件的自相似集E(?)Rn(n>1),我们引入等径不等式Hs|E(X)≤|X|s,以及使该不等式等号成立而直径大于0的极限集U(?)Rn.这里,Hs|E(·)是限制到集合E上的s维Hausdorff测度,而|X|指集合X在欧氏度量下的直径.当s=n时,n维球是唯一的极限集;当s∈(1,n)时,除去一些反面例子以外,我们对上述等径不等式的极限集的基本性质所知甚少.可以看出,这些不等式与Hs(E)的准确值的计算有密切联系.作为特例,我们将考虑Sierpinski垫片,指出计算这一典型自相似集的In2/In3维Hausdorff测度准确值的困难何在.由此可以大致推想,为什么除去平凡情形以外,至今还没有一个具体的满足开集条件而维数大于1的自相似集的:Hausdorff测度准确值被计算出来.