曹怀信;徐宗本
本文引入由紧距离空间(K,d)到给定Banach代数A中的Lipschitz-φ算子构成的非交换Banach代数L~φ(K,A)与l~φ(K,A),证明了它们都是由K到A的全体连续算子构成的非交换Banach代数C(K,A)的子代数,并且关于范数||f||φ=L_φ(f)+||f||∞是Banach代数,研究了不同 Lipschitz尺度函数φ对应的大(小)Lipschitz代数之间的关系。特别当φ(t)=t~α时,引入了极限代数lim_(α→0+)l~α(K,A),lim_(α→+∞)l~α(K,A),lim_(α→0+)L~α(K,A)与lim_(α→+∞)L~α(K,A)以及距离空间的Lipschitz连通性,得到了lim_(α→+∞)l~α(K,A)=A的充要条件,也给出了lim_(α→0+)L~α(K,A)=C(K,A)的条件。