李国君;刘桂真
设G是一个图,具有顶点集合V(G)和边集合E(G).设g和f是定义在V(G)上的整数值函数,使对每个x∈V(G),有g(x)≤f(x).图G的一个(g,f)-因子是G的一个支撑子图H,使对每个x∈V(G),有g(x)≤d_H(x)≤f(x).G的一个(g,f)-因子分解是E(G)的边不相交的(g,g)-因子的一个划分.设F={F-1,F_2,…,F_m}为G的一个因子分解,H是G的一个有mr条边的子图.如果每个F_i恰好与H有r条公共边,1≤i≤m,则称Fr-正交于H.本文证明每个(mg+kr,mf-kr)-图含有一个子图R,使R有(g,f)-因子分解r-正交于任意给定的有kr条边的子图,其中m,k和r为正整数且k