丘京辉
在文献[2]-[7]中,关于有界集的Dieudonne-Schwartz定理(以后简称为DST)已被推广到一般诱导极限(E,ξ)=ind lim(E_n,ξ_n).本文考虑所有(E_n,ξ_n)都为局部凸可尺度空间的情况,这在应用上是重要的.我们给出了这一类诱导极限中有界集的一个本质特征.由此获得了:当所有(E_n,ξ_n)为Frechet空间时,使DST成立的充要条件;特别地,若每个E_n~E为ξ-序列式完备,则DST成立.作为应用,我们研究了缓增广义函数空间和解析函数空间中的有界集.