<正> 一个取值于{0,1,2,…,N}的随机过程 Y(t)(t≥0) 称为 n 阶准马尔可夫链,如果对任意 i=1,2,…,N,T>0,在事件{Y(T)=i}和(?)_T={Y(s);0≤s≤T}的条件下,过程 Y(T+t) (t≥0) 的有限维分布仅依赖于 i 而不依赖于 T 和(?)_T(见[1]).当此性质对 i=0也成立,Y(t)就是通常的马尔可夫链.
<正> 设三角级数 (a_0)/2+sum from n=1 to ∞ a_n cosnx+b_n sinnx 的余弦系数有相同符号(全部≥0或全部≤0),正弦系数也有相同的符号,简称这种级数为同号系数级数.在[1][2]中,我们讨论过这类级数.我们证明了S_n(f;x)-f(x)=0(E_n(f)). (1)这里 S_n(f;x) 是 f(x)的富里埃级数的第 n 个部分和,E_n(f)表示 f(α)的阶不高于 n 的
<正> 设 H 为实可分 Hilbert 空间.在[1]中我们对 H 中连续的单调算子 T 定义了它的拓扑度Deg(T,Ω,p)=deg_A(T+εI,Ω,p),其中ε为充分小的正数,deg_A 表示 A-proper 映射的拓扑度(见[3]).本文中我们对多值极大单调算子 T:H→2~H 定义其拓扑度,并给出这种拓扑度的基
<正> 设 C,L 各表示2π周期的连续函数空间及 L 可和函数空间,其范数分别是:对 f∈C:‖f‖_c=max|f(x)|.对 f∈L:‖f‖_L=integral from 0 to 2π|f(x)|dx.令 M 表示本性有界的2π周期可测函数空间,范数为‖f‖_M=ess sup|f(x)|.引入函数类
<正> 本文给出交变阻尼的 Liénard 方程(?)+f(x)(?)+x=0或其等价方程组(dx)/(dt)=v,(dv)/(dt)=-x-f(x)v(dx)/(dt)=v,(dv)/(dt)=-x-f(x)v (1)至多有 n 个极限环的充分条件,附带改进了文[1]的工作.全文均设 f(x)∈C~0,并记 F(x)=integral from 0 to x f(x)dx.原方程组的等价方程组
<正> In this paper we study the existence of periodic solutions for n-dimensional Liénard syste-ms of the formx″+((?)~2F(x))/((?)x~2)x′+grad G(x)=e(t), (1.1)where F∈C~2(R~n,R),G∈C~1(R~n,R),e∈C(R,R~n)and e(t)≡e(t+T)for some con-stant T>0.By((?)~2F(x))/((?)x~2),we denote the Hessian Matrix of F at x.