万哲先
<正> §1.引言以 F_q 表 q 个元素的有限域,q 是一个素数的冪.考察 F_q 上所有 n 数组(x_1,x_2,…,x_n),x_i∈F_q,i=1,2,…,n,所组成的 n 维向量空间 V_n(F_q).V_n(F_q)的任—m 维子空间 P(1≤m≤n)都可以用一个秩为 m 的 m×n 矩阵来代表,只要这个矩阵的 m 个行向量组成 P 的一组基.我们把代表这个子空间 P 的矩阵仍记作 P.自然两个秩为 m 的m×n 矩阵 P 和 Q 代表同一子空间,当且仅当有 m×m 非奇异矩阵 A 存在使得 P=AQ.以下设 n=2ν是偶数,并考察 F_q 上的2ν×2ν的非奇异交错矩阵