|
On Simultaneous Pell Equations x2-(m2-1)y2=z2-(n2-1)y2=1
Xun Gui GUAN
Acta Mathematica Sinica, Chinese Series
2023, 66 (1):
133-142.
DOI: 10.12386/A20210003
Let m, n, L be positive integer. The following conclusion are proved: If m<n≤m+Lmε, ε∈(0,1), and m>(123789L√L)1/1-ε, or j>10.25×1012log4(2(L+1)(123789L√L)1/1-ε, then positive integer solutions of simultaneous Pell equations $x^{2}-(m^{2}-1)y^{2}=z^{2}-(n^{2}-1)y^{2}=1$ satisfy $1≤k\leq\delta L^{2}$, where $\delta\in[\frac{1}{2}(123787L\sqrt{L})^{\frac{1}{\varepsilon-1}},1]$,$ and $$y=\frac{(m+\sqrt{m^{2}{-}1})^{j}{-}(m{-}\sqrt{m^{2}{-}1})^{j}}{2\sqrt{m^{2}{-}1}}=\frac{(n{+}\sqrt{n^{2}{-}1})^{k}{-}(n{-}\sqrt{n^{2}{-}1})^{k}}{2\sqrt{n^{2}{-}1}},$ and j$j=k=1$ or $k+2\leq j<\frac{1}{3}(5-2\varepsilon)k$,$2\,|\,(j+k)$, $k>\frac{3}{1-\varepsilon}$. It improves the previous work of [Proc. Amer. Math. Soc., 2015, 143(11): 4685-4693].
Reference |
Related Articles |
Metrics |
Comments(0)
|
|