具有正则支的三线性ζ积分测试函数

刘一峰

数学学报 ›› 2024, Vol. 67 ›› Issue (2) : 273-285.

PDF(541 KB)
PDF(541 KB)
数学学报 ›› 2024, Vol. 67 ›› Issue (2) : 273-285. DOI: 10.12386/A20220177
论文

具有正则支的三线性ζ积分测试函数

    刘一峰
作者信息 +

Test Functions for Trilinear Zeta Integrals with Regular Support

    Yi Feng LIU
Author information +
文章历史 +

摘要

本文将证明: 对于最大指数严格小于 1/22 的表示,存在具有正则支的三线性 ζ 积分测试函数.

Abstract

In this note, we confirm a conjecture on the existence of test functions for trilinear zeta integrals with regular support, for representations with maximal exponent strictly less than 1/22.

关键词

三线性 ζ 积分 / 正则支 / Siegel-Eisenstein 序列

Key words

trilinear zeta integrals / regular support / Siegel-Eisenstein series

引用本文

导出引用
刘一峰. 具有正则支的三线性ζ积分测试函数. 数学学报, 2024, 67(2): 273-285 https://doi.org/10.12386/A20220177
Yi Feng LIU. Test Functions for Trilinear Zeta Integrals with Regular Support. Acta Mathematica Sinica, Chinese Series, 2024, 67(2): 273-285 https://doi.org/10.12386/A20220177

参考文献

[1] Agranovsky M. L., Narayanan E. K., Lp-integrability, supports of Fourier transforms and uniqueness for convolution equations, J. Fourier Anal. Appl., 2004, 10(3): 315-324.
[2] Blomer V., Brumley F., On the Ramanujan conjecture over number fields, Ann. of Math. (2), 2011, 174(1): 581-605.
[3] Garrett P. B., Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2), 1987, 125(2): 209-235.
[4] Ichino A., Trilinear forms and the central values of triple product L-functions, Duke Math. J., 2008, 145(2): 281-307.
[5] Ikeda T., On the location of poles of the triple L-functions, Compositio Math., 1992, 83(2): 187-237.
[6] Li C., Liu Y., Chow groups and L-derivatives of automorphic motive for unitary groups, Ann. of Math. (2), 2021, 194(3): 817-901.
[7] Loke H. Y., Trilinear forms of gl2, Pacific J. Math., 2001, 197(1): 119-144.
[8] Piatetski-Shapiro I., Rallis S., Rankin triple L functions, Compositio Math., 1987, 64(1): 31-115.
[9] Prasad D., Trilinear forms for representations of GL(2) and local -factors, Compositio Math., 1990, 75(1): 1-46.
[10] Yuan X., Zhang S., Zhang W., The Gross-Zagier Formula on Shimura Curves, Annals of Mathematics Studies, Vol. 184, Princeion Univ. Press, Princeton, 2013.
[11] Yuan X., Zhang S., Zhang W., Triple product L-series and Gross-Kudla-Schoen cycles, preprint, available online, https://math.mit.edu/wz2113/math/online/triple.pdf.
PDF(541 KB)

Accesses

Citation

Detail

段落导航
相关文章

/