Test Functions for Trilinear Zeta Integrals with Regular Support
Yi Feng LIU
Author information+
Institute for Advanced Study in Mathematics, Zhejiang University, Hangzhou 310058, P.R. China
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
文章历史+
收稿日期
修回日期
出版日期
2022-12-07
2023-05-13
2024-03-15
发布日期
2024-03-07
摘要
本文将证明: 对于最大指数严格小于 的表示,存在具有正则支的三线性 积分测试函数.
Abstract
In this note, we confirm a conjecture on the existence of test functions for trilinear zeta integrals with regular support, for representations with maximal exponent strictly less than 1/22.
Yi Feng LIU.
Test Functions for Trilinear Zeta Integrals with Regular Support. Acta Mathematica Sinica, Chinese Series, 2024, 67(2): 273-285 https://doi.org/10.12386/A20220177
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Agranovsky M. L., Narayanan E. K., Lp-integrability, supports of Fourier transforms and uniqueness for convolution equations, J. Fourier Anal. Appl., 2004, 10(3): 315-324. [2] Blomer V., Brumley F., On the Ramanujan conjecture over number fields, Ann. of Math. (2), 2011, 174(1): 581-605. [3] Garrett P. B., Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2), 1987, 125(2): 209-235. [4] Ichino A., Trilinear forms and the central values of triple product L-functions, Duke Math. J., 2008, 145(2): 281-307. [5] Ikeda T., On the location of poles of the triple L-functions, Compositio Math., 1992, 83(2): 187-237. [6] Li C., Liu Y., Chow groups and L-derivatives of automorphic motive for unitary groups, Ann. of Math. (2), 2021, 194(3): 817-901. [7] Loke H. Y., Trilinear forms of gl2, Pacific J. Math., 2001, 197(1): 119-144. [8] Piatetski-Shapiro I., Rallis S., Rankin triple L functions, Compositio Math., 1987, 64(1): 31-115. [9] Prasad D., Trilinear forms for representations of GL(2) and local -factors, Compositio Math., 1990, 75(1): 1-46. [10] Yuan X., Zhang S., Zhang W., The Gross-Zagier Formula on Shimura Curves, Annals of Mathematics Studies, Vol. 184, Princeion Univ. Press, Princeton, 2013. [11] Yuan X., Zhang S., Zhang W., Triple product L-series and Gross-Kudla-Schoen cycles, preprint, available online, https://math.mit.edu/wz2113/math/online/triple.pdf.