一类微分差分方程的整函数解

吴丽镐, 张然然, 黄志波

数学学报 ›› 2021, Vol. 64 ›› Issue (3) : 471-478.

PDF(389 KB)
PDF(389 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (3) : 471-478. DOI: 10.12386/A2021sxxb0040
论文

一类微分差分方程的整函数解

    吴丽镐1, 张然然2, 黄志波3
作者信息 +

Entire Solutions to a Certain Type of Differential-difference Equations

    Li Hao WU1, Ran Ran ZHANG2, Zhi Bo HUANG3
Author information +
文章历史 +

摘要

本文考虑一类非线性微分差分方程fzn+Lz,f)=qzepz,其中n ≥ 2为自然数,Lz,f)(≢ 0)是关于fz)的线性微分差分多项式,pz)和qz)是非零多项式.在该方程具有超级小于1的超越整函数解的假设下,证明了n=2且λf)=σf)=deg pz),并给出二次微分差分方程整函数解的具体表示.

Abstract

We investigate the nonlinear differential-difference equations of form f(z)n+ L(z, f)=q(z)ep(z), where n ≥ 2, L(z, f)(≢ 0) is a linear differential-difference polynomial in f(z), with small functions as its coefficients, p(z) and q(z) are non-vanishing polynomials. We first obtain that n=2 and f(z) satisfies λ(f)=σ(f)=deg p(z) if the equation possesses a transcendental entire solution of hyper order σ2(f)< 1. Furthermore, the exact form of the entire solutions of the equation is also obtained.

关键词

微分差分方程 / 差分方程 / 整函数解

Key words

differential-difference equation / difference equation / entire solution

引用本文

导出引用
吴丽镐, 张然然, 黄志波. 一类微分差分方程的整函数解. 数学学报, 2021, 64(3): 471-478 https://doi.org/10.12386/A2021sxxb0040
Li Hao WU, Ran Ran ZHANG, Zhi Bo HUANG. Entire Solutions to a Certain Type of Differential-difference Equations. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 471-478 https://doi.org/10.12386/A2021sxxb0040

参考文献

[1] Ablowitz M. J.,Halburd R., Herbst B., On the extension of Painlevé property to difference equations, Nonlinearity, 2000, 13(3):889-905.
[2] Chen Z. X., Yang C. C., On entire solutions of certain type of nonlinear differential-difference equations, Taiwanese J. Math., 2014, 18(3):677-685.
[3] Chen Z. X., Shon K. H., Some results on difference Riccati equations, Acta Math. Sin. Engl. Ser., 2011, 27(6):1091-1100.
[4] Chiang Y. M., Feng S. J., On the Nevanlinna characteristic of f(z +η) and difference equations in the complex plane, Ramanujan J., 2008, 16(1):105-129.
[5] Halburd R., Korhonen R., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314(2):477-487.
[6] Halburd R., Korhonen R., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 2006, 31(2):463-478.
[7] Halburd R., Korhonen R., Tohge K., Holomorphic curves with shift invariant hyper plane preimages, Trans. Amer. Math. Soc., 2014, 366(8):4267-4298.
[8] Halburd R., Wang J., All admissible meromorphic solutions of Hayman's equation, Int. Math. Res. Not., 2015, 2015(18):8890-8902.
[9] Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
[10] Heittokangas J., Korhonen R., Laine I., On meromorphic solutions of certain nonlinear differential equations, Bull. Austral. Math. Soc., 2002, 66(2):331-343.
[11] Laine I., Nevanlinna Theory and Complex Differental Equations, de Gruyter, Berlin, 1993.
[12] Laine I., Yang C. C., Clunie theorems for difference and q-difference polynomials, J. London Math. Soc., 2007, 76(3):556-566.
[13] Li P., Entire solutions of certain type of differential equations, J. Math. Anal. Appl., 2008, 344(1):253-259.
[14] Liao L. W., Yang C. C., Zhang J. J., On meromorphic solutions of certain type of nonlinear differential equations, Ann. Acad. Sci. Fenn. Math., 2013, 38(2):581-593.
[15] Yang C. C., On entire solutions of a certain type of nonlinear differential equation, Bull. Austral. Math. Soc., 2001, 64(3):377-380.
[16] Yang C. C., Laine I., On analogies between nonlinear difference and differential equations, Proc. Japan Acad. Ser. A, Math. Sci., 2010, 86(1):10-14.
[17] Yang C. C., Yi H. X., Uniqueness Theory of Meromorphic Function, Kluwer, Dordrecht, 2003.
[18] Zhang R. R., Huang Z. B., On meromorphic solutions of non-linear difference equations, Comput. Methods Funct. Theory, 2018, 18(3):389-408.
[19] Zhang J., Liao L. W., On entire solutions of a certain type of nonlinear differential and difference equations, Taiwanese J. Math., 2011, 15(5):2145-2157.
[20] Zhang J., Lu X., Liao L. W., On exact transcendental meromorphic solutions of nonlinear complex differential equations, Houston J. Math., 2019, 45(2):439-453.

基金

国家自然科学基金(11801093,11871260);广东省自然科学基金(2018A030313508);广东省普通高校特色创新类项目(2019KTSCX119);广州市科技计划(202002030228)
PDF(389 KB)

123

Accesses

0

Citation

Detail

段落导航
相关文章

/