基于病例队列设计的平均处理效应的估计

曹永秀, 余吉昌

数学学报 ›› 2022, Vol. 65 ›› Issue (4) : 751-762.

PDF(645 KB)
PDF(645 KB)
数学学报 ›› 2022, Vol. 65 ›› Issue (4) : 751-762. DOI: 10.12386/A20200143
论文

基于病例队列设计的平均处理效应的估计

    曹永秀, 余吉昌
作者信息 +

Estimation of Average Treatment Effect with Case-cohort Design

    Yong Xiu CAO, Ji Chang YU
Author information +
文章历史 +

摘要

病例队列设计因为具有成本效益而被广泛应用于流行病学和生物医学的研究中.对于病例队列设计,现有的统计方法主要集中在如何得到回归参数的相合及有效的估计上,然而很少有工作估计非随机化处理的因果效应.本文基于病例队列设计数据提出了一种有效的估计平均处理效应的方法,建立了所提估计量的相合性和渐近正态性,并通过仿真研究考察了其在有限样本下的表现.最后,我们将所提方法应用于真实数据的分析中.

Abstract

The case–cohort design has been widely used in epidemiological and biomedical studies due to its cost-effectiveness. Existing statistical methods are primarily focused on obtaining consistent and efficient estimators for the regression parameters. However, there is little work to estimate the causal effect of a nonrandomized treatment on the outcome. In this article, we develop an efficient inference procedure to estimate the average treatment effect based on data from the case–cohort design. We also establish the consistency and asymptotic normality of the proposed estimator. The finite sample performance of the proposed estimator is evaluated through simulation studies. Finally, we use the proposed method to analyze a real data set.

关键词

平均处理效应 / 病例队列设计 / Kaplan-Meier估计 / 观测性研究 / 倾向得分

Key words

average treatment effect / case-cohort design / Kaplan-Meier estimator / observational study / propensity score

引用本文

导出引用
曹永秀, 余吉昌. 基于病例队列设计的平均处理效应的估计. 数学学报, 2022, 65(4): 751-762 https://doi.org/10.12386/A20200143
Yong Xiu CAO, Ji Chang YU. Estimation of Average Treatment Effect with Case-cohort Design. Acta Mathematica Sinica, Chinese Series, 2022, 65(4): 751-762 https://doi.org/10.12386/A20200143

参考文献

[1] Anstrom K. J., Tsiatis A. A., Utilizing propensity scores to estimate causal treatment effects with censored time-lagged data, Biometrics, 2002, 57(4):1207-1218.
[2] Bitouzé D., Laurent B., Massart P., A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator, Ann. Inst. H. Poincare-probab. Staiost, 1999, 35(6):735-763.
[3] Breslow N. E., Chatterjee N., Design and analysis of two-phase studies with binary outcome applied to Wilms tumor prognosis, J. R. Stat. Soc. Ser. C Appl., 1999, 48(4):457-468.
[4] Cao Y. X., Yu J. C., Liu Y. Y., Optimal generalized case-cohort analysis with Cox's proportional hazards model, Acta Math. Appl. Sin. Engl. Ser., 2015, 31(3):841-867.
[5] Chen J. H., Rao J. N. K., Asymptotic normality under two-phase sampling designs, Stat. Sinica, 2007, 17(3):1047-1064.
[6] Deng L. F., Ding J. L., Liu Y. Y., et al., Regression analysis for the proportional hazards model with parameter constraints under case-cohort design, Comput. Stat. Data Anal., 2018, 117:194-206.
[7] Fleming T. R., Harrington D. P., Counting Processes and Survival Analysis, Wiley, New York, 1991.
[8] Ferguson T. S., A Course in Large Sample Theory, Chapman & Hall, Florida, 1996.
[9] Foutz R., On the unique consistent solution to the likelihood equations, J. Am. Stat. Assoc., 1977, 72(357):147-148.
[10] Gijsbers L., Ding E., Malik V., et al., Consumption of dairy foods and diabetes incidence:a dose-response meta-analysis of observational studies, Am. J. Clin. Nutr., 2016, 103(4):1111-1124.
[11] Gill R. D., Censoring and stochastic integrals, Stat. Neerl., 1980, 34(2):124-124.
[12] Green D. M., Breslow N. E., Beckwith J. B., et al., Comparison between single-dose and divided-dose administration of dactinomycin and doxorubicin for patients with Wilms' tumor:a report from the National Wilms' Tumor Study, J. Clin. Oncol., 1998, 16(1):237-245.
[13] Haneuse S., VanderWeele T., Arterburn D., Using the E-value to assess the potential effect of unmeasured confounding in observational studies, J. Am. Med. Assoc., 2019, 321(6):602-603.
[14] Hájek J., Limiting distributions in simple random sampling from a finite population, Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5:361-374.
[15] Holland P., Statistics and causal inference (with discussion), J. Am. Stat. Assoc., 1986, 81:945-970.
[16] Imbens G. W., Rubin D. B., Causal Inference for Statistics, Social, and Biomedical Sciences:An Introduction, Cambridge University Press, New York, 2015.
[17] Johnston S. C., Rootenberg J. D., Katrak S., et al., Effect of a US National Institutes of Health programme of clinical trials on public health and costs, Lancet, 2006, 367:1319-1327.
[18] Kulich M., Lin D. Y., Additive hazards regression for case-cohort studies, Biometrika, 2000, 87(1):73-87.
[19] Månsson R., Joffe M., Sun W. G., et al., On the estimation and use of propensity scores in case-control and case-cohort studies, Am. J. Epidemiol., 2007, 166(3):332-339.
[20] Mao H. Z., Li L., Yang W., et al., On the propensity score weighting analysis with survival outcome:Estimands, estimation, and inference, Stat. Med., 2018, 37(26):3745-3763.
[21] Neyman J., On the application of probability theory to agricultural experiments:Essay on principles, Section 9. Masters Thesis. Portions translated into english by D. Dabrowska and T. Speed (1990), Stat. Sci., 1990, 5(4):465-472.
[22] Peterson A., Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions, J. Am. Stat. Assoc., 1977, 72:854-858.
[23] Prentice R. L., A case-cohort design for epidemiologic cohort studies and disease prevention trials, Biometrika, 1986, 73(1):1-11.
[24] Robins J. M., Rotnitzky A., Recovery of information and adjustment for dependent censoring using surrogate markers, In:AIDS Epidemiology, Birkhauser, Boston, 1992.
[25] Rosenbaum P. R., Rubin D. B., The central role of the propensity score in observational studies for causal effects, Biometrika, 1983, 70(1):41-55.
[26] Rose, S. and van der Laan, M., A double robust approach to causal effects in case-control studies, Am. J. Epidemiol., 2014, 179(6):663-669.
[27] Rubin D. B., Estimating causal effects of treatments in randomized and nonrandomized studies, J. Educ. Psychol., 1974, 66(5):688-701.
[28] Rubin D. B., Inference and missing data, Biometrika, 1976, 63(3):581-592.
[29] Schuemie M., Hripcsak G., Ryan P., et al., Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data, P. Natl. Acad. Sci. USA, 2018, 115(11):2571-2577.
[30] VanderWeele T., Vansteelandt S., A weighting approach to causal effects and additive interaction in case-control studies:marginal structural linear odds models, Am. J. Epidemiol., 2011, 174(10):1197-1203.
[33] Wang J. G., A note on the uniform consistency of the Kaplan-Meier estimator, Ann. Stat., 1987, 15(3):1313-1316.
[32] Wang X., Beste L., Maierc M., et al., Double robust estimator of average causal treatment effect for censored medical cost data, Stat. Med., 2016, 35(18):3101-3116.
[33] Wang W. W., Scharfstein D., Tan Z. Q., et al., Causal inference in outcome-dependent two-phase sampling designs, J. Roy. Stat. Soc. B Stat. Methodol., 2009, 71(5):947-969.
[34] Yang S., Ding P., Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores, Biometrika, 2018, 105(2):487-493.
[35] Yang S., Ding P., Combining multiple observational data sources to estimate causal effects, J. Am. Stat. Assoc., 2020, 115:1540-1554.
[36] Yu J. C., Shi Y. Y., Yang Q. L., et al., Additive hazards regression under generalized case-cohort sampling, Acta. Math. Sin. Engl. Ser., 2014, 30:251-260.

基金

国家自然科学基金资助项目(11701571);中央高校基本科研基金(31512111206)
PDF(645 KB)

356

Accesses

0

Citation

Detail

段落导航
相关文章

/