
Gorenstein平坦模与Frobenius扩张
Gorenstein Flat Modules and Frobenius Extensions
设R⊂A是环的Frobenius扩张,其中A是右凝聚环,M是任意左A-模.首先证明了AM是Gorenstein平坦模当且仅当M作为左R-模也是Gorenstein平坦模.其次,证明了Nakayama和Tsuzuku关于平坦维数沿着Frobenius扩张的传递性定理的“Gorenstein版本”:若AM具有有限Gorenstein平坦维数,则GfdA(M)=GfdR(M).此外,证明了若R⊂S是可分Frobenius扩张,则任意A-模(不一定具有有限Gorenstein平坦维数),其Gorenstein平坦维数沿着该环扩张是不变的.
Let R⊂A be a Frobenius extension of rings, where A is right coherent. Let M be any left A-module. We first show that AM is Gorenstein flat if and only if the underlying R-module RM is Gorenstein flat. Then we prove a "Gorenstein version" of Nakayama and Tsuzuku's theorem on transfer of flat dimensions along Frobenius extensions:if AM has finite Gorenstein flat dimension, then GfdA(M)=GfdR(M). Moreover, it is proved that if R ⊂ S is a separable Frobenius extension, then for any A-module (not necessarily of finite Gorenstein flat dimension), its Gorenstein flat dimension is invariant along such ring extension.
Gorenstein平坦模 / Gorenstein平坦维数 / Frobenius扩张 / 可分扩张 {{custom_keyword}} /
Gorenstein flat module / Gorenstein flat dimension / Frobenius extension / separable extension {{custom_keyword}} /
[1] Auslander M., Bridger M., Stable Module Category, Mem. Amer. Math. Soc. 94, 1969.
[2] Chen X. W., Totally reflexive extensions and modules, J. Algebra, 2013, 379:322-332.
[3] Christensen L. W., Gorenstein Dimensions, Lecture Notes in Mathematics Vol.1747, Springer-Verlag, Berlin, 2000.
[4] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics No.30, Walter De Gruyter, New York, 2000.
[5] Enochs E. E., Jenda O. M. G., Torrecillas B., Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan, 1993, 10:1-9.
[6] Happel D., On Gorenstein Algebras, In:Representation Theory of Finite Groups and Finite-dimensional Algebras, Progress in Math., vol 95, Birkhäuser, Basel, 1991, pp. 389-404.
[7] Holm H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 2004, 189:167-193.
[8] Huang Z. Y., Sun J. X., Invariant properties of representations under excellent extensions, J. Algebra, 2012, 358:87-101.
[9] Kadison L., New Examples of Frobenius Extensions, Univ. Lecture Ser., Vol. 14, Amer. Math. Soc., Providence, RI, 1999.
[10] Kasch F., Grundlagen einer Theorie der Frobeniuserweiterungen, Math. Ann., 1954, 127:453-474.
[11] Li F., Sun L. G., Derived representation type and Gorenstein projective modules of an algebra under crossed product, Sci. China Ser. A, 2013, 56:531-540.
[12] Liu Z. K., Excellent extensions and homological dimensions, Comm. Algebra, 1994, 22:1741-1745.
[13] Mao L. X., Ding N. Q., The cotorsion dimension of modules and rings, Lecture Notes Pure Appl. Math., Abelian groups, rings, modules and homological algebra, 2005, 249:217-233.
[14] Morita K., Adjoint pairs of functors and Frobenius extensions, Sc. Rep. T.K.D. Sect., 1965, 9:40-71.
[15] Nakayama T., Tsuzuku T., On Frobenius extensions I, Nagoya Math. J., 1960, 17:89-110; On Frobenius extensions Ⅱ, Nagoya Math J., 1961, 19:127-148.
[16] Ren W., Gorenstein projective modules and Frobenius extensions, Sci. China Math., 2018, 61(7):1175-1186.
[17] Rotman J., An Introduction to Homological Algebra, Academic Press, London, 1979.
[18] Zhao Z. B., Gorenstein homological invariant properties under Frobenius extensions, arXiv:1712.09111.
国家自然科学基金资助项目(11871125)重庆市自然科学基金(cstc2018jcyjAX0541)及市教委科学技术研究项目(KJQN201800509)
/
〈 |
|
〉 |