
Abel群的一些分解定理的推广(II)
Some Extensions of Decomposition Theorems in Abelian Groups (Ⅱ)
本文讨论了2类具体的主理想整环上的拟循环模,研究了A-宽有限的向量空间,刻画了该类向量空间的结构,阐述了A-宽有限的向量空间的A-不变子空间构成的偏序集必满足极小条件,并给出了带有线性变换的向量空间作为F[λ]-模构成拟循环模的一个充要条件.
We first discuss two special quasi-cyclic modules over principal ideal domains and then investigate the structures of vector spaces of finite A-width. We show that the poset of A-invariant subspaces of a vector space of finite A-width must satisfy the minimal condition, and give a sufficient and necessary condition for a vector space (as a F[λ]-module) to be a quasi-cyclic module.
拟循环模 / A-宽 / A-不变子空间 {{custom_keyword}} /
quasi-cyclic module / A-width / A-invariant subspace {{custom_keyword}} /
[1] Anderson F. W., Fuller K. R., Rings and Categories of Modules, Springer-Verlag, New York, 1992.
[2] Brandl R., The Dilworth number of subgroup lattices, Archiv der Mathematik, 1998, 50:502-510.
[3] Fuchs L., Infinite Abelian Group I-Ⅱ, Academic Press, New York, 1970-1973.
[4] Lam T. Y., Lectures on Mudules and Rings, Springer-Verlag, New York, 1998.
[5] Liu H. G., Luo X. L., Qin X., et al., Some Extensions of Decomposition Theorems In Abelian Groups (I) (in Chinese), Acta Mathematica Sinica, 2017, 60(6):1065-1074.
[6] Robinson D. J. S., A Course in the Theory of Groups (Second Edition), Springer-Verlag, New York, 1996.
[7] Wang X. F., On the n-path groups (in Chinese), Journal of Southeast Teachers University, 1985, 4:21-30.
国家自然科学基金资助项目(11771129);湖北省高等学校优秀中青年科技创新团队计划(T201601);湖北省新世纪高层次人才工程专项基金
/
〈 |
|
〉 |