单个生成元Walsh p-进制平移不变空间伸缩的交与并

张岩, 李云章

数学学报 ›› 2019, Vol. 62 ›› Issue (1) : 1-12.

PDF(568 KB)
PDF(568 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (1) : 1-12. DOI: 10.12386/A2019sxxb0001
论文

单个生成元Walsh p-进制平移不变空间伸缩的交与并

    张岩1, 李云章2
作者信息 +

The Intersection and Union of Dilates of Singly Generated Walsh p-adic Shift-invariant Spaces

    Yan ZHANG1, Yun Zhang LI2
Author information +
文章历史 +

摘要

p-进制MRA与GMRA是构造L2(R+)中小波框架的重要工具.L2(R+)中嵌套子空间序列交集为0,并集为L2(R+)是其构成p-进制MRA与GMRA的基本要求.本文研究单个生成元Walsh p-进制平移不变子空间伸缩的交与并,证明了:对任意单个生成元Walsh p-进制平移不变子空间,其p-进制伸缩的交是0;若生成元φ为Walsh p-细分函数,则其p-进制伸缩的并是L2(R+)中一个Walsh p-进制约化子空间.特别地,其伸缩构成L2(R+)中p-进制GMRA当且仅当∪j∈Zpjsupp(Fφ)=R+,其中F为定义在L2(R+)上的Walsh p-进制傅里叶变换.值得注意的是:形式上,我们的结果类似于通常L2(R)的情形,然而其证明不是平凡的.这是因为定义在R+上的p-进制加法“⊕”不同于定义在R上的通常加法“+”.

Abstract

p-adic MRA and GMRA are important tools for constructing wavelet frames in L2(R+). That a nested subspace sequence in L2(R+) has trivial intersection and L2(R+) union is a fundamental requirement for it to form a p-adic MRA and GMRA. This paper addresses the intersection and union of p-adic dilates of a singly generated p-adic shift-invariant subspace. We prove that, for a singly generated p-adic shift-invariant subspace, the intersection of its p-adic dilates is 0, and the union of its p-adic dilates is a Walsh p-adic reducing subspace of L2(R+) if the generator φ is Walsh p-adic refinable in addition. In particular, the dilates form a p-adic GMRA for L2(R+) if and only if ∪j∈Zpjsupp(Fφ)=R+, where F is the Walsh p-adic Fourier transform on L2(R+). It is worth noticing that our results are similar to the case of usual L2(R), while their proofs are nontrivial. It is because the p-adic addition ⊕ on R+ is different from the usual addition + on R.

关键词

框架 / p-进制小波框架 / Walsh p-进制细分函数

Key words

frame / p-adic wavelet frame / Walsh p-adic refinable function

引用本文

导出引用
张岩, 李云章. 单个生成元Walsh p-进制平移不变空间伸缩的交与并. 数学学报, 2019, 62(1): 1-12 https://doi.org/10.12386/A2019sxxb0001
Yan ZHANG, Yun Zhang LI. The Intersection and Union of Dilates of Singly Generated Walsh p-adic Shift-invariant Spaces. Acta Mathematica Sinica, Chinese Series, 2019, 62(1): 1-12 https://doi.org/10.12386/A2019sxxb0001

参考文献

[1] Albeverio S., Evdokimov S., Skopina M., p-adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl., 2010, 16(5):693-714.
[2] Atreas N., Melas A., Stavropoulos T., Affine dual frames and extension principles, Appl. Comput. Harmon. Anal., 2014, 36(1):51-62.
[3] Benedetto J. J., Benedetto R. L., A wavelet theory for local fields and related groups, J. Geom. Anal., 2004, 14(3):423-456.
[4] Benedetto R. L., Examples of wavelets for local fields. In:Wavelets, Frames and Operator Theory. Contemp. Math., vol. 345, Amer. Math. Soc., Providence, 2004, pp. 27-47.
[5] Benedetto J. J., Li S., The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 1998, 5(4):389-427.
[6] de Boor C., DeVore R. A., Ron A., On the construction of multivariate (pre)wavelets, Constr. Approx., 1993, 9(2/3):123-166.
[7] de Boor C., DeVore R. A., Ron A., Approximation from shift-invariant subspaces of L2(Rd), Trans. Amer. Math. Soc., 1994, 341(2):787-806.
[8] Bownik M., Rzeszotnik Z., Construction and reconstruction of tight framelets and wavelets via matrix mask functions, J. Funct. Anal., 2009, 256(4):1065-1105.
[9] Chen Z. Y., Micchelli C. A., Xu Y. S., A construction of interpolating wavelets on invariant sets, Math. Comp., 1999, 68(228):1569-1587.
[10] Christensen O., An Introduction to Frames and Riesz Bases, Springer, Birkhäuser, 2016.
[11] Dahmen W., Han B., Jia R. Q., et al., Biorthogonal multiwavelets on the interval:cubic Hermite splines, Constr. Approx., 2000, 16(2):221-259.
[12] Daubechies I., Han B., Ron A., et al., Framelets, MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 2003, 14(1):1-46.
[13] Ehler M., Han B., Wavelet bi-frames with few generators from multivariate refinable functions, Appl. Comput. Harmon. Anal., 2008, 25(3):407-414.
[14] Evdokimov S., Skopina M., On orthogonal p-adic wavelet bases, J. Math. Anal. Appl., 2015, 424(2):952-965.
[15] Farkov Yu. A., Orthogonal wavelets with compact support on locally compact Abelian groups, Izv. Ross. Akad. Nauk. Ser. Math., 2005, 69:193-220; English transl. Izv. Math., 2005, 69:623-650.
[16] Farkov Yu. A., Orthogonal p-wavelets on R+, In:Wavelets and Splines, St. Petersburg University Press, St. Petersburg, 2005, pp. 4-26.
[17] Farkov Yu. A., Protasov V. Y., Dyadic wavelets and refinable functions on a half-line, English Transl. Sb. Math., 2006, 197(9/10):1529-1558.
[18] Farkov Yu. A., Maksimov A. Y., Stroganov S. A., On biorthogonal wavelets related to the Walsh functions, Int. J. Wavelets Multiresolut. Inf. Process., 2011, 9(3):485-499.
[19] Farkov Yu. A., On wavelets related to the Walsh series, J. Approx. Theory, 2009, 161(1):259-279.
[20] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh Series Transforms, Nauka, Moscow, 1987; English transl., Kluwer, Dordrecht, 1991.
[21] Jia H. F., Li Y. Z., Refinable function-based construction of weak (quasi-)affine bi-frames, J. Fourier Anal. Appl., 2014, 20(6):1145-1170.
[22] Jia R. Q., Jiang Q. T., Shen Z. W., Convergence of cascade algorithms associated with nonhomogeneous refinement equations, Proc. Amer. Math. Soc., 2001, 129(2):415-427.
[23] Khrennikov A. Yu., Shelkovich V. M., An infinite family of p-adic non-Haar wavelet bases and pseudodifferential operators, p-adic Numbers Ultrametric Anal. Appl., 2009, 1(3):204-216.
[24] Kozyrev S. V., Wavelet analysis as a p-adic spectral analysis, Izv. Akad. Nauk, Ser. Mat., 2002, 66(2):149-158.
[25] Kozyrev S. V., p-adic pseudo-differential operators and p-adic wavelets, Theor. Math. Phys., 2004, 138(3):1-42.
[26] Lang W. C., Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal., 1996, 27(1):305-312.
[27] Lang W. C., Wavelet analysis on the Cantor dyadic group, Houston J. Math., 1998, 24(3):533-544.
[28] Lang W. C., Fractal multiwavelets related to the Cantor dyadic group, Int. J. Math. Math. Sci., 1998, 21(2):307-317.
[29] Li Y. Z., Zhou F. Y., GMRA-based construction of framelets in reducing subspaces of L2(Rd), Int. J. Wavelets Multiresolut. Inf. Process, 2011, 9(2):237-268.
[30] Lian Q. F., Li Y. Z., Reducing subspace frame multiresolution analysis and frame wavelets, Commun. Pure Appl. Anal., 2007, 6(3):741-756.
[31] Mallat S. G., Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans. Amer. Math. Soc., 1989, 315(1):69-87.
[32] Meenakshi, Manchanda P., Siddiqi A. H., Wavelets associated with nonuniform multiresolution analysis on positive half-line, Int. J. Wavelets Multiresolut. Inf. Process., 2012, 10(2), 1250018, 27 pp.
[33] Petukhov A. P., Explicit construction of framelets, Appl. Comput. Harmon. Anal., 2001, 11(2):313-327.
[34] Romero J. R., Alexander S. K., Baid S., et al., The geometry and the analytic properties of isotropic multiresolution analysis, Adv. Comput. Math., 2009, 31(1-3):283-328.
[35] Ron A., Shen Z., Affine systems in L2(Rd):the analysis of the analysis operator, J. Funct. Anal., 1997, 148(2):408-447.
[36] Ron A., Shen Z., Affine systems in L2(Rd) Ⅱ:Dual systems, J. Fourier Anal. Appl., 1997, 3(5):617-637.
[37] Rudin W., Real and Complex Analysis, McGraw-Hill Book Co., New York, 1987.
[38] Schipp, F., Wade W. R., Simon P., Walsh Series:An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol/New York, 1990.
[39] Shah F. A., Construction of wavelet packets on p-adic field, Int. J. Wavelets Multiresolut. Inf. Process., 2009, 7(5):553-565.
[40] Shah F. A., On some properties of p-wavelet packets via the Walsh-Fourier transform, J. Nonlinear Anal. Optim., 2012, 3(2):185-193.
[41] Stavropoulos T., The Geometry of Extension Principles, Houston J. Math., 2012, 38(3):833-853.
[42] Sun Q., Homogeneous and nonhomogeneous refinable distributions in F q,γ, Wavelet analysis and applications (Guangzhou, 1999), 235-244, AMS/IP Stud. Adv. Math., 25, Amer. Math. Soc., Providence, RI, 2002.
[43] Zhou F. Y., Li Y. Z., Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of L2(Rd), Kyoto J. Math., 2010, 50(1):83-99.
[44] Zhou F. Y., Li Y. Z., Generalized multiresolution structures in reducing subspaces of L2(Rd), Sci. China Math., 2013, 56(3):619-638.

基金

国家自然科学基金资助课题(11501010,11271037);宁夏高等学校科学研究项目(NGY2018-163)

PDF(568 KB)

371

Accesses

0

Citation

Detail

段落导航
相关文章

/