三角环上全可导点

杜奕秋, 王宇

数学学报 ›› 2015, Vol. 58 ›› Issue (6) : 935-940.

PDF(327 KB)
PDF(327 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (6) : 935-940. DOI: 10.12386/A2015sxxb0092
论文

三角环上全可导点

    杜奕秋1, 王宇2
作者信息 +

All-Derivable Points in Triangular Rings

    Yi Qiu DU1, Yu WANG2
Author information +
文章历史 +

摘要

A 是一个结合环,GA. G称 为 A 的一个全可导点,如果每一个在G点可导的可加映射φ:AA (即对任意的S,TAφ(ST) =φ(S)T +Sφ(T) 且ST=G) 都是一个导子.本文证明了一类三角环上的每个非零元都是全可导点.作为此结果的推论得到:一类域上的三角矩阵环的每个非零元都是全可导点.

Abstract

Let A be an associative ring. Let GA. We say that G is an allderivable point of A if every derivable additive map φ : AA at G (i.e., φ(ST) = φ(S)T +Sφ(T) for all S, T ∈ A with ST = G) is a derivation. The aim of the paper is to show that every nonzero element in certain triangular rings is an all-derivable point. As a corollary we prove that every nonzero element in upper triangular matrix rings over a certain field is an all-derivable point.

关键词

全可导点 / 三角环 / 套代数

Key words

all-derivable point / triangular rings / nest algebras

引用本文

导出引用
杜奕秋, 王宇. 三角环上全可导点. 数学学报, 2015, 58(6): 935-940 https://doi.org/10.12386/A2015sxxb0092
Yi Qiu DU, Yu WANG. All-Derivable Points in Triangular Rings. Acta Mathematica Sinica, Chinese Series, 2015, 58(6): 935-940 https://doi.org/10.12386/A2015sxxb0092

参考文献

[1] An R. L., Hou J. C., Characterizations of derivations on triangular rings: Additive maps derivable at idempotents, Linear Algebra Appl., 2009, 431(2): 1070–1080.

[2] Cheung W. S., Commuting maps of triangular algebras, J. London Math. Soc., 2001, 63(1): 117–127.

[3] Cheung W. S., Lie derivations of triangular algebras, Linear Multilinear Algebra, 2003, 51(1): 299–310.

[4] Hou J. C., Qi X. F., Characterizations of derivations of Banach space nest algebras: all-derivable points, Linear Algebra Appl., 2010, 432(8): 3183–3200.

[5] Wang Y., Additivity of multiplicative maps on triangular rings, Linear Algebra Appl., 2011, 434(1): 625–635.

[6] Zhu J., Characterization of all-derivable points in nest algebras, Proc. Amer. Math. Soc., 2013, 141(4): 2343–2350.

[7] Zhu J., Xiong C. P., Zhang R. Y., All-derivable points in the algebra of all upper triangular matrices, Linear Algebra Appl., 2008, 429(4): 804–818.

基金

上海市自然科学基金资助项目(14ZR1431200)

PDF(327 KB)

370

Accesses

0

Citation

Detail

段落导航
相关文章

/