Artin空间中SU(3)规范场的几何解析

石赫

数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 661-668.

PDF(512 KB)
PDF(512 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 661-668. DOI: 10.12386/A2013sxxb0066
论文

Artin空间中SU(3)规范场的几何解析

    石赫
作者信息 +

The Geometric Analysis of SU(3) Gauge Fields in Artin Space

    He SHI
Author information +
文章历史 +

摘要

研究4维Artin空间中SU(3)规范场的线性化问题.首先对Yang-Mills方程的推导进行了讨论, 给出了恰当的 Yang-Mills方程的概念, 其具有明确的几何意义. 其次, 构造了一类线性微分变换,称之为Artin空间SU(3)规范场的示性变换.示性变换是应用数学机械化方法确定的. 经由示性变换, 将非线性的恰当的Yang-Mills 方程变为一组线性方程, 实现了SU(3)规范场的场方程的线性化. 从而证明了,对于恰当的 Yang-Mills 方程,SU(3)规范场包括 8 个独立的规范场.

Abstract

This paper aims to study the linearizations of SU(3) Yang-Mills gauge fields in Artin space which is 4-dimensional. First, the Yang-Mills equation is discussed, and the concept of exact Yang-Mills equation is given, and it has explicit geometric meanings. Then a kind of differential transformation, which is called characteristic transformation of SU(3) Yang-Mills gauge fields in Artin space, is constructed. The characteristic transformation is obtained by the method of mathematics mechanization. The linearizations of exact Yang-Mills equations are obtained via characteristic transformations. Thus, the existence of SU(3) Yang-Mills gauge fields is proved.

关键词

数学机械化 / SU(3)规范场 / 恰当的 Yang-Mills 方程 / 示性变换

Key words

mathematics mechanization / SU(3) gauge fields / exact Yang-Mills equation / characteristic transformations

引用本文

导出引用
石赫. Artin空间中SU(3)规范场的几何解析. 数学学报, 2013, 56(5): 661-668 https://doi.org/10.12386/A2013sxxb0066
He SHI. The Geometric Analysis of SU(3) Gauge Fields in Artin Space. Acta Mathematica Sinica, Chinese Series, 2013, 56(5): 661-668 https://doi.org/10.12386/A2013sxxb0066

参考文献

[1] Chern S. S., Collected Works of Shiing-Shen Chern (in Chinese), East China Normal University Press, Shanghai, 2002.
[2] Shi H., The exact Yang-Mills gauge fields of SU(2) in Euclidean space (in Chinese), Journal of System Science and Mathematical, 2008, 28(7): 859-866.
[3] Shi H., The exact Yang-Mills gauge fields of SU(3) in Euclidean space, Acta Mathematica Sinica, Chinese Series, 2008, 51(5): 833-840.
[4] Shi H., The mathematical formulation of SU(2) gauge fields in Minkowski space, Manuscript.
[5] Shi H., The mathematical formulation of SU(3) gauge Fields in Minkowski space (in Chinese), Frontier Science, 2009, 2(3): 22-28.
[6] Shi H., The geometric analysis of SU(2) gauge fields in Artin space (in Chinese), Manuscript.
[7] Witten E., Quantum Yang-Mills theory (in Chinese), Mathematics, 2001, 2: 100-111.
[8] Wu W. T., Wu Wentsün on Mathematics Mechanization (in Chinese), Shangdong Education Press, Ji'nan, 1996.
[9] Wu W. T., Mathematics Mechanization (in Chinese), Science Press, Beijing, 2002.
[10] Yang C. N., Mills R. L., Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev., 1954, 96(1): 191-195.
[11] Zhang H. Q., Superfluous order and the proper solutions of Maxwell equation, Applied Math. and Mech., 1981, 2(3): 349-360.

基金

国家重点基础研究发展规划项目(G2004CB318000)

PDF(512 KB)

199

Accesses

0

Citation

Detail

段落导航
相关文章

/