研究了几何测度空间中的基本对称函数μ0, μ1,..., μn和内蕴体积函数V0,V1,..., Vn,证明了Ln上连续不变赋值函数空间中由基本对称函数构成的基{μ0, μ1,..., μn}和由内蕴体积函数构成的基{V0,V1,..., Vn}(或均质积分构成的基{W0,W1,..., Wn})等价.
Abstract
In this paper, the elementary symmetric functions μ0, μ1,..., μn and the intrinsic volumes V0,V1,..., Vn are investigated. We show that the elementary symmetric function basis {μ0, μ1,..., μn} and the intrinsic volume basis {V0,V1,..., Vn} defined on Ln (also the quermassintegral basis {W0,W1,..., Wn}) are equivalent.
关键词
余挠 维数 /
整体维数 /
交叉积 /
Hopf代数
{{custom_keyword}} /
Key words
cotorsion dimension /
global dimension /
crossed product /
Hopf algebra
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bennis D., Mahdou N., Gorenstein global dimensions and cotorsion dimension of rings, Comm. Algebra, 2009, 2: 1709-1718.
[2] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, Walter de Gruyter, Berlin, 2000.
[3] Mao L. X., Ding N. Q., The cotorsion dimension of modules and rings, Lect. Notes Pure Appl. Math., 2005, 249: 517-522.
[4] Mao L. X., Ding N. Q., Notes on cotorsion modules, Comm. Algebra, 2005, 33: 349-360.
[5] Rotman J., An Introduction to Homological Algebra, Academic Press, New York, San Francisco, London, 1979.
[6] Montgomery S., Hopf Algebras and Their Actions on Rings, CBMS Lecture Notes Providence, RI: Amer. Math. Soc., 1993: 82.
[7] Blattner R. J., Montgomery S., Crossed products and Galois extensions of Hopf algebras, J. Algebra, 1985, 95: 153-172.
[8] Blattner R. J., Cohen M., Montgomery S., Crossed products and inner actions of Hopf algebras, Pasific J. Math., 1989, 137: 37-54.
[9] Doi Y., Takeuchi M., Cleft comodule algebras for a bialgebra, Comm. Algebra, 1986, 14: 801-818.
[10] Zh M. M., Li F., Invariant properties of representations under cleft extensions, Sci. China, Ser. A, 2007, 50(1): 121-131.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
山东省自然科学基金资助项目(2012AL02);黑龙江省自然科学基金资助项目(A200906)
{{custom_fund}}