Cleft扩张的余挠维数

贾玲

数学学报 ›› 2013, Vol. 56 ›› Issue (3) : 409-412.

PDF(320 KB)
PDF(320 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (3) : 409-412. DOI: 10.12386/A2013sxxb0040
论文

Cleft扩张的余挠维数

    贾玲
作者信息 +

The Cotorsion Dimensions of a Cleft Extension

    Ling JIA
Author information +
文章历史 +

摘要

研究了几何测度空间中的基本对称函数μ0, μ1,..., μn和内蕴体积函数V0,V1,..., Vn,证明了Ln上连续不变赋值函数空间中由基本对称函数构成的基{μ0, μ1,..., μn}和由内蕴体积函数构成的基{V0,V1,..., Vn}(或均质积分构成的基{W0,W1,..., Wn})等价.

Abstract

In this paper, the elementary symmetric functions μ0, μ1,..., μn and the intrinsic volumes V0,V1,..., Vn are investigated. We show that the elementary symmetric function basis {μ0, μ1,..., μn} and the intrinsic volume basis {V0,V1,..., Vn} defined on Ln (also the quermassintegral basis {W0,W1,..., Wn}) are equivalent.

关键词

余挠 维数 / 整体维数 / 交叉积 / Hopf代数

Key words

cotorsion dimension / global dimension / crossed product / Hopf algebra

引用本文

导出引用
贾玲. Cleft扩张的余挠维数. 数学学报, 2013, 56(3): 409-412 https://doi.org/10.12386/A2013sxxb0040
Ling JIA. The Cotorsion Dimensions of a Cleft Extension. Acta Mathematica Sinica, Chinese Series, 2013, 56(3): 409-412 https://doi.org/10.12386/A2013sxxb0040

参考文献

[1] Bennis D., Mahdou N., Gorenstein global dimensions and cotorsion dimension of rings, Comm. Algebra, 2009, 2: 1709-1718.

[2] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, Walter de Gruyter, Berlin, 2000.

[3] Mao L. X., Ding N. Q., The cotorsion dimension of modules and rings, Lect. Notes Pure Appl. Math., 2005, 249: 517-522.

[4] Mao L. X., Ding N. Q., Notes on cotorsion modules, Comm. Algebra, 2005, 33: 349-360.

[5] Rotman J., An Introduction to Homological Algebra, Academic Press, New York, San Francisco, London, 1979.

[6] Montgomery S., Hopf Algebras and Their Actions on Rings, CBMS Lecture Notes Providence, RI: Amer. Math. Soc., 1993: 82.

[7] Blattner R. J., Montgomery S., Crossed products and Galois extensions of Hopf algebras, J. Algebra, 1985, 95: 153-172.

[8] Blattner R. J., Cohen M., Montgomery S., Crossed products and inner actions of Hopf algebras, Pasific J. Math., 1989, 137: 37-54.

[9] Doi Y., Takeuchi M., Cleft comodule algebras for a bialgebra, Comm. Algebra, 1986, 14: 801-818.

[10] Zh M. M., Li F., Invariant properties of representations under cleft extensions, Sci. China, Ser. A, 2007, 50(1): 121-131.

基金

山东省自然科学基金资助项目(2012AL02);黑龙江省自然科学基金资助项目(A200906)

PDF(320 KB)

218

Accesses

0

Citation

Detail

段落导航
相关文章

/