双变元有理形式幂级数的对角定理的注记

吴晓丽, 陈绍示

数学学报 ›› 2013, Vol. 56 ›› Issue (2) : 203-210.

PDF(479 KB)
PDF(479 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (2) : 203-210. DOI: 10.12386/A2013sxxb0021
论文

双变元有理形式幂级数的对角定理的注记

    吴晓丽1,2, 陈绍示3
作者信息 +

A Note on the Diagonal Theorem of Bivariate Rational Formal Power Series

    Xiao Li WU1,2, Shao Shi CHEN3
Author information +
文章历史 +

摘要

在组合数学与数学物理中,许多特殊函数满足系数为多项式的线性微分方程. 这类函数被称为D-有限函数. 上世纪80年代, Gessel, Stanley, Zeilberger等组合学家猜想多变元有理形式幂级数的对角是D-有限的. Gessel和Zeilberger分别在其文章中给出了该猜想的证明. 但是, Lipshitz在其文章中指出他们的证明是不完备的.本文基于对角算子的一些基本性质, 给出了两个变元情形下Gessel证明的更直接的修补办法.

Abstract

Special functions that satisfy linear differential equations with polynomial coefficients appear ubiquitously in combinatorics and mathematical physics. Such kind of special functions are called D-finite functions by Stanley. In the early 1980's, many combinatorists, such as Gessel, Stanley, Zeilberger etc., conjectured that the diagonal of rational power series in several variables is D-finite. Gessel and Zeilberger proved this conjecture in their papers, respectively. Later, Lipshitz pointed out that their proofs are not complete and he gave a proof by basing on a different idea. Zeilberger completed his proof with the theory of holonomic D-modules. In this note, we follow the spirit of Gessel's proof strategy and fix the gap in his proof in the case of bivariate rational formal power series. The key ingredients we used are some basic properties of the diagonal operation.

关键词

对角定理 / D-有限 / P-递归

Key words

Diagonal theorem / D-finite / P-recursive

引用本文

导出引用
吴晓丽, 陈绍示. 双变元有理形式幂级数的对角定理的注记. 数学学报, 2013, 56(2): 203-210 https://doi.org/10.12386/A2013sxxb0021
Xiao Li WU, Shao Shi CHEN. A Note on the Diagonal Theorem of Bivariate Rational Formal Power Series. Acta Mathematica Sinica, Chinese Series, 2013, 56(2): 203-210 https://doi.org/10.12386/A2013sxxb0021

参考文献

[1] Gessel I. M., Two theorems on rational power series, Utilitas Mathematica, 1981, 19: 247-254.

[2] Zeilberger D., Sister Celine's technique and its generalization, J. Math. Anal. Appl., 1982, 85: 114-145.

[3] Lipshitz L., The diagonal of a D-finite power series is D-finite, Journal of Algebra, 1988, 113: 373-378.

[4] Christol G., Diagonales de fractions rationnelles et équations differéntielles, Group de Travail D'analyse Ultramétrique, 1982-1983, 10(2), exp. No 18: 1-10.

[5] Haible B., Stoll M., D-finite Power Series and the Diagonal Theorem, Preprint Dated 13 October, 1993.

[6] Stanley R., Differentiably finite power series, European J. Combinatorics, 1980, 1: 175-188.

[7] Furstenberg H., Algebraic functions over finite fields, J. Algebra, 1967, 7: 271-277.

基金

国家自然科学基金天元数学专项基金(11126089);美国国家自然科学基金(CCF-1017217)

PDF(479 KB)

411

Accesses

0

Citation

Detail

段落导航
相关文章

/