拓扑度计算与应用

杨志林

数学学报 ›› 2005, Vol. 48 ›› Issue (2) : 275-280.

PDF(335 KB)
PDF(335 KB)
数学学报 ›› 2005, Vol. 48 ›› Issue (2) : 275-280. DOI: 10.12386/A2005sxxb0032
论文

拓扑度计算与应用

    杨志林
作者信息 +

Computation of Topological Degree and Applications

    Zhi Lin YANG
Author information +
文章历史 +

摘要

本文运用锥理论计算一类全连续场的拓扑度,极大地减弱了非线性算子下方 有界的条件, 因而本质上改进和推广了现有结果. 最后,把抽象结果应用于研究超线 性Hammerstein积分方程非平凡解的存在性.

Abstract

In this paper, we compute, by using cone theory, the topological degree of a class of completely continuous fields where the condition on the lower boundedness of nonlinear operators is sharply weakened. Therefore our results substantially improve and generalize the existing ones in the literature. Finally we use our abstract results to establish the existence of nontrivial solutions for superlinear Hammerstein integral equations.

关键词

拓扑度 / / 不动点

引用本文

导出引用
杨志林. 拓扑度计算与应用. 数学学报, 2005, 48(2): 275-280 https://doi.org/10.12386/A2005sxxb0032
Zhi Lin YANG. Computation of Topological Degree and Applications. Acta Mathematica Sinica, Chinese Series, 2005, 48(2): 275-280 https://doi.org/10.12386/A2005sxxb0032
PDF(335 KB)

569

Accesses

0

Citation

Detail

段落导航
相关文章

/