小波基按平移性的分类及非调和小波基

王桥

数学学报 ›› 2001, Vol. 44 ›› Issue (2) : 193-196.

PDF(442 KB)
PDF(442 KB)
数学学报 ›› 2001, Vol. 44 ›› Issue (2) : 193-196. DOI: 10.12386/A2001sxxb0025
论文

小波基按平移性的分类及非调和小波基

    王桥
作者信息 +

Classification of Wavelet Bases by Translation Subgroups and Nonharmonic Wavelet Bases

    Qiao WANG
Author information +
文章历史 +

摘要

本文研究小波子空间与一般整平移空间可平移点集 S的结构,证明了 S=R或者 S=1/qZ(q ∈ N).给出了可平移性的谱刻画与泛函刻画,最后讨论了非调和小波基.

Abstract

The structure of the set S of shiftable points of wavelet subspaces is researched in this paper. We prove that S = R or S =1\q Z where q ∈ N. The spectral and functional characterizations for the shiftability are given. Furthermore, the nonharmonic wavelet bases is discussed.

引用本文

导出引用
王桥. 小波基按平移性的分类及非调和小波基. 数学学报, 2001, 44(2): 193-196 https://doi.org/10.12386/A2001sxxb0025
Qiao WANG. Classification of Wavelet Bases by Translation Subgroups and Nonharmonic Wavelet Bases. Acta Mathematica Sinica, Chinese Series, 2001, 44(2): 193-196 https://doi.org/10.12386/A2001sxxb0025
PDF(442 KB)

229

Accesses

0

Citation

Detail

段落导航
相关文章

/