关于非负下半连续函数最优可测耦合的存在性及其应用

张绍义

数学学报 ›› 2000, Vol. 43 ›› Issue (5) : 773-780.

数学学报 ›› 2000, Vol. 43 ›› Issue (5) : 773-780. DOI: 10.12386/A2000sxxb0101
论文

关于非负下半连续函数最优可测耦合的存在性及其应用

    张绍义
作者信息 +

Existence and Application of Optimal Measurable Coupling with Respect to Non-Negative Lower Semi-Continuous Functions

    Shao Yi ZHANG
Author information +
文章历史 +

摘要

本文证明了两个转移概率关于非负下半连续函数最优可测耦合的存在性定理.作为对这一结果的应用,推广了Strassen定理,进而证明了跳过程的随机可比性等价于保序耦合的存在性.

Abstract

In this paper the existence theorem of the optimal measurable coupling of two transition probabilities on non-negative lower semi-continuous function is proved. As an application of this result, Strassen's theorem is generalized, moreover, it is proved that the existence of an order-preserving coupling of jump processes is equivalent to the stochastical comparability of jump processes.

关键词

转移概率 / 可测耦合 / 下半连续 / 跳过程

引用本文

导出引用
张绍义. 关于非负下半连续函数最优可测耦合的存在性及其应用. 数学学报, 2000, 43(5): 773-780 https://doi.org/10.12386/A2000sxxb0101
Shao Yi ZHANG. Existence and Application of Optimal Measurable Coupling with Respect to Non-Negative Lower Semi-Continuous Functions. Acta Mathematica Sinica, Chinese Series, 2000, 43(5): 773-780 https://doi.org/10.12386/A2000sxxb0101

207

Accesses

0

Citation

Detail

段落导航
相关文章

/