摘要
<正> 设E_1■ E_2■ E_3…为局部凸Hausdorss线性拓扑空间序列,E_n所具有的拓扑记作ξ_n,(E,ξ)=indlim(E_n,ξ_n)为其相对于连续恒同映照id:(E_n,ξ_n)→(E_(n+1),ξ_(n+1))的Hausdorff诱导极限(见[1],p.57).显然,(E_n,ξ_n)的每个有界子集必为(E,ξ)的有界子集.Dieudonne-Schwartz定理指出:若对于n∈N,E_n闭于(E_(n+1),ξ_(n+1)),且ξ_(n+1)关于E_n的相对拓扑等于ξ_n,则E的子集B为ξ-有界,当且仅当存在n∈N使B为(E_n,
丘京辉.
关于诱导极限有界集的一些结果. 数学学报, 1986, 29(2): 280-284 https://doi.org/10.12386/A1986sxxb0039
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}