ON DEMOULIN TRANSFORMS OF PROJEGTIVE MINIMAL SURFACES(Ⅰ)
Author information+
SU BUCHIN(Fuh-tan University and Academia Sinica)
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
文章历史+
收稿日期
修回日期
出版日期
1955-11-23
1900-01-01
1957-01-15
发布日期
1957-01-15
摘要
<正> 射影极小曲面和它的任何一个杜慕兰变换组成渐近曲线的对应——这性质早已见于最初发明者 G.Thomsen 的论文.反过来说,具有这性质的曲面必须是射影极小曲面或者所谓 Q 曲面.以往有关于射影极小曲面的特征大都是按照曲面的杜慕兰变换即 D 变换来寻找的,比方说 O.Mayer 的研究是其一例.二十年前著者曾经定义过一个射影共变地联系于曲面点的伴随织面并利用它来作出射影极小曲面的一些和从
Abstract
The main purpose of the present paper is to investigate the relationbetween the Godeaux sequences of a projective minimal surface S and oneof its Demoulin transform S.We demonstrate the followingTheorem.If the corresponding points of the Godeaux sequences of Sand(?)be arranged in three rows,(?)then in the line space R_5 the join of any two consecutive points of the se-cond row must intersect the join of the two consecutiue points(if any.)standing in the same columns of the first or third row.