The aim of this paper is to prove the a.e. convergence of sequences of the Cesàro and Riesz means of the Walsh-Fourier series of d variable integrable functions. That is, let a= (a1, . . . ,ad) : N → Nd (i>d ∈ P) such that aj(n + 1) ≥ δ supk≤n aj(k) (j = 1, . . . , d, n ∈ N) for some δ > 0 and a1(+∞) = . . . = ad(+∞) = +∞. Then, for each integrable function f ∈ L1(Id), we have the a.e. relation for the Cesàro means limn→∞ σa(n)αf = f and for the Riesz means limn→∞ σa(n)α,γf = f for any 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d). A straightforward consequence of our result is the so-called cone restricted a.e. convergence of the multidimensional Cesàro and Riesz means of integrable functions, which was proved earlier by Weisz.
Key words
Walsh system /
d-dimensional Fejér and Riesz means /
subsequence /
almost everywhere convergence
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Billard, P.: Sur la convergence presque partout des séries de Fourier-Walsh des fonctions de l'espace L2(0, 1). Studia Math., 28, 363-388 (1967)
[2] Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math., 116, 135-157 1966)
[3] Fine, N. J.: Cesàro summability of Walsh-Fourier series. Proc. Natl. Acad. Sci. USA, 41, 558-591 (1955)
[4] Gát, G.: Pointwise convergence of the Cesàro means of double Walsh series. Ann. Univ. Sci. Budapest. ect. Comput., 16, 173-184 (1996)
[5] Hunt, R. A.: On the convergence of Fourier series. Orthogonal Expansions Continuous Analog., Proc. onf. Southern Illinois Univ. Edwardsville 1967, 1968, 235-255
[6] Schipp, F., Wade, W. R., Simon, P., et al.: Walsh Series: An Introduction to Dyadic Harmonic Analysis, dam Hilger, Bristol and New York, 1990
[7] Sjölin, P.: An inequality of Paley and convergence a.e. of Walsh-Fourier series. Ark. Mat., 7, 551-570 1969)
[8] Weisz, F.: Cesàro summability of two-dimensional Walsh-Fourier series. Trans. Amer. Math. Soc., 348, 169-2181 (1996)
[9] Weisz, F.: Maximal estimates for the (C,α) means of d-dimensional Walsh-Fourier series. Proc. Amer. ath. Soc., 128(8), 2337-2345 (2000)
[10] Weisz, F.: Summability results of Walsh- and Vilenkin-Fourier series. Leindler, L. (ed.) et al., Functions, eries, operators. Alexits memorial conference in honor of the 100th anniversary of the birth of Professor eorge Alexits (1899-1978), Budapest, Hungary, August 9-13, 1999. Budapest: János Bolyai Mathematical ociety, 2002, 443-464
[11] Weisz, F.: Summability of Multi-Dimensional Fourier Series and Hardy Spaces, Kluwer Academic Publishers, ordrecht, 2002
[12] Zygmund, A.: Trigonometric Series, Vol. I and II. 2nd reprint of the 2nd ed., Cambridge University Press, ambridge, 1977
[13] Zygmund, J. A., Marcinkiewicz, J.: On the summability of double Fourier series. Fund. Math., 32, 122-132 1939)
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}
Funding
Supported by project TÁMOP-4.2.2.A-11/1/KONV-2012-0051
{{custom_fund}}