Almost Everywhere Convergence of Sequences of Cesàro and Riesz Means of Integrable Functions with Respect to the Multidimensional Walsh System

György GÁT

Acta Mathematica Sinica ›› 2014, Vol. 30 ›› Issue (2) : 311-322.

PDF(239 KB)
PDF(239 KB)
Acta Mathematica Sinica ›› 2014, Vol. 30 ›› Issue (2) : 311-322. DOI: 10.1007/s10114-013-1766-3
Articles

Almost Everywhere Convergence of Sequences of Cesàro and Riesz Means of Integrable Functions with Respect to the Multidimensional Walsh System

  • György GÁT
Author information +
History +

Abstract

The aim of this paper is to prove the a.e. convergence of sequences of the Cesàro and Riesz means of the Walsh-Fourier series of d variable integrable functions. That is, let a= (a1, . . . ,ad) : N → Nd (i>d ∈ P) such that aj(n + 1) ≥ δ supkn aj(k) (j = 1, . . . , d, n ∈ N) for some δ > 0 and a1(+∞) = . . . = ad(+∞) = +∞. Then, for each integrable function fL1(Id), we have the a.e. relation for the Cesàro means limn→∞ σa(n)αf = f and for the Riesz means limn→∞ σa(n)α,γf = f for any 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d). A straightforward consequence of our result is the so-called cone restricted a.e. convergence of the multidimensional Cesàro and Riesz means of integrable functions, which was proved earlier by Weisz.

Key words

Walsh system / d-dimensional Fejér and Riesz means / subsequence / almost everywhere convergence

Cite this article

Download Citations
György GÁT. Almost Everywhere Convergence of Sequences of Cesàro and Riesz Means of Integrable Functions with Respect to the Multidimensional Walsh System. Acta Mathematica Sinica, 2014, 30(2): 311-322 https://doi.org/10.1007/s10114-013-1766-3

References

[1] Billard, P.: Sur la convergence presque partout des séries de Fourier-Walsh des fonctions de l'espace L2(0, 1). Studia Math., 28, 363-388 (1967)

[2] Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math., 116, 135-157 1966)

[3] Fine, N. J.: Cesàro summability of Walsh-Fourier series. Proc. Natl. Acad. Sci. USA, 41, 558-591 (1955)

[4] Gát, G.: Pointwise convergence of the Cesàro means of double Walsh series. Ann. Univ. Sci. Budapest. ect. Comput., 16, 173-184 (1996)

[5] Hunt, R. A.: On the convergence of Fourier series. Orthogonal Expansions Continuous Analog., Proc. onf. Southern Illinois Univ. Edwardsville 1967, 1968, 235-255

[6] Schipp, F., Wade, W. R., Simon, P., et al.: Walsh Series: An Introduction to Dyadic Harmonic Analysis, dam Hilger, Bristol and New York, 1990

[7] Sjölin, P.: An inequality of Paley and convergence a.e. of Walsh-Fourier series. Ark. Mat., 7, 551-570 1969)

[8] Weisz, F.: Cesàro summability of two-dimensional Walsh-Fourier series. Trans. Amer. Math. Soc., 348, 169-2181 (1996)

[9] Weisz, F.: Maximal estimates for the (C,α) means of d-dimensional Walsh-Fourier series. Proc. Amer. ath. Soc., 128(8), 2337-2345 (2000)

[10] Weisz, F.: Summability results of Walsh- and Vilenkin-Fourier series. Leindler, L. (ed.) et al., Functions, eries, operators. Alexits memorial conference in honor of the 100th anniversary of the birth of Professor eorge Alexits (1899-1978), Budapest, Hungary, August 9-13, 1999. Budapest: János Bolyai Mathematical ociety, 2002, 443-464

[11] Weisz, F.: Summability of Multi-Dimensional Fourier Series and Hardy Spaces, Kluwer Academic Publishers, ordrecht, 2002

[12] Zygmund, A.: Trigonometric Series, Vol. I and II. 2nd reprint of the 2nd ed., Cambridge University Press, ambridge, 1977

[13] Zygmund, J. A., Marcinkiewicz, J.: On the summability of double Fourier series. Fund. Math., 32, 122-132 1939)

Funding

Supported by project TÁMOP-4.2.2.A-11/1/KONV-2012-0051

PDF(239 KB)

87

Accesses

0

Citation

Detail

Sections
Recommended

/