Demazure Product of the Affine Weyl Groups

Xu Hua HE, Si An NIE

Acta Mathematica Sinica, Chinese Series ›› 2024, Vol. 67 ›› Issue (2) : 296-306.

PDF(611 KB)
PDF(611 KB)
Acta Mathematica Sinica, Chinese Series ›› 2024, Vol. 67 ›› Issue (2) : 296-306. DOI: 10.12386/A20220172

Demazure Product of the Affine Weyl Groups

  • Xu Hua HE1, Si An NIE2
Author information +
History +

Abstract

The Demazure product gives a natural monoid structure on any Coxeter group. Such structure occurs naturally in many different areas in Lie Theory. This paper studies the Demazure product of an extended affine Weyl group. The main discovery is a close connection between the Demazure product of an extended affine Weyl group and the quantum Bruhat graph of the finite Weyl group. As applications, we obtain explicit formulas on the generic Newton points and the Demazure products of elements in the lowest two-sided cell, and obtain an explicit formula on the LusztigVogan map from the coweight lattice to the set of dominant coweights.

Key words

affine Weyl group / Demazure product / quantum Bruhat graph

Cite this article

Download Citations
Xu Hua HE, Si An NIE. Demazure Product of the Affine Weyl Groups. Acta Mathematica Sinica, Chinese Series, 2024, 67(2): 296-306 https://doi.org/10.12386/A20220172

References

[1] Bédard R., The lowest two-sided cell for an affine Weyl group, Comm. Algebra, 1988, 16: 1113-1132.
[2] Brenti F., Fomin F., Postnikov A., Mixed Bruhat operators and Yang-Baxter equations for Weyl groups, Int. Math. Res. Not., 1999, 8: 419-441.
[3] Fomin S., Gelfand S., Postnikov A., Quantum Schubert polynomials, J. Amer. Math. Soc., 1997, 10: 565- 596.
[4] He X., Minimal length elements in some double cosets of Coxeter groups, Adv. Math., 2007, 215: 469-503.
[5] He X., Geometric and homological properties of affine Deligne-Lusztig varieties, Ann. Math., 2014, 179: 367-404.
[6] He X., Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties, Ann. Sci. Ecole Norm. Sup., 2016, 49: 1125-1141.
[7] He X., Cordial elements and dimensions of affine Deligne-Lusztig varieties, Forum. Math. Pi, 2021, 9: Paper No. e9.
[8] He X., Affine Deligne-Lusztig varieties associated with generic Newton points, arXiv:2107.14461, to appear in Pure and Applied Mathematics Quarterly, special volume in honor of George Lusztig.
[9] He X., Nie S., On the acceptable elements, Int. Math. Res. Not. IMRN, 2018, 3: 907-931.
[10] Iwahori N., Matsumoto H., On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. IHES, 1965, 25: 5-48.
[11] Kottwitz R., Isocrystals with additional structure, Compositio Math., 1985, 56: 201-220.
[12] Kottwitz R., Isocrystals with additional structure, II, Compositio Math., 1997, 109: 255-339.
[13] Lam T., Shimozono M., Quantum cohomology of G/P and homology of affine Grassmannian, Acta Math., 2010, 204(1): 49-90.
[14] Le D. B., Le H., Levin B., et al., Local models for Galois deformation rings and applications, arXiv: 2007.05398.
[15] Lusztig G., Cells in affine Weyl groups, In: Algebraic Groups and Related Topics, Adv. Studies Pure Math., Vol. 6, North-Holland, Amsterdam, 1985, 255-287.
[16] Lusztig G., Total positivity in reductive groups, In: Lie Theory and Geometry, Progr. Math., Vol. 123, Birkhäuser Boston, Boston, MA, 1994, 531-568.
[17] Lusztig G., A bar operator for involutions in a Coxeter group, Bull. Inst. Math. Acad. Sinica (N.S.), 2012, 7: 355-404.
[18] Lusztig G., Total positivity in reductive groups, II, Bull. Inst. Math. Acad. Sinica (N.S.), 2010, 14: 403-460.
[19] Lusztig G., Vogan D., Hecke algebras and involutions in Weyl groups, Bull. Inst. Math. Acad. Sinica (N.S.), 2012, 7: 323-354.
[20] Lusztig G., Vogan D., Involutions in Weyl groups and nil-Hecke algebras, arXiv:2107.10754.
[21] Milicévić E., Maximal Newton points and the quantum Bruhat graphs, Michigan Math. J., 2021, 70(3): 451-502.
[22] Milićević E., Viehmann E., Generic Newton points and the Newton poset in Iwahori double cosets, Forum Math. Sigma, 2020, 8: Paper No. e50.
[23] Pappas G., Rapoport M., Twisted loop groups and their affine flag varieties, with an appendix “On parahoric subgroups” by T. Haines and M. Rapoport, Adv. Math., 2008, 219(1): 118-198.
[24] Postnikov A., Quantum Bruhat graph and Schubert polynomials, Proc. Amer. Math. Soc., 2005, 133: 699- 709.
[25] Shi J. Y., A two-sided cell in an affine Weyl group, J. London Math. Soc., 1987, 36(2): 407-420.
PDF(611 KB)

444

Accesses

0

Citation

Detail

Sections
Recommended

/