
Robustness for Linear Time-varying Systems Using the Gap Metric
Xiao Ping XU, Yan Yue SHI
Acta Mathematica Sinica, Chinese Series ›› 2021, Vol. 64 ›› Issue (6) : 881-894.
Robustness for Linear Time-varying Systems Using the Gap Metric
We mainly study the robust stability for linear time-varying systems within the framework of nest algebra. We consider the robust stability when the system and controller are subject to independent uncertainties measured by the gap metric, and a sufficient condition is obtained by using the trigonometric structure of the graphs about the plant and the controller. Furthermore, we also obtain some sufficient conditions for the simultaneously robust stability of several linear time-varying systems. The numerical example shows that our conclusion is effective.
stability / nest algebra / infinite dimensional linear time-varying systems / gap metric {{custom_keyword}} /
[1] Dale W. N., Smith M. C., Stabilizability and existence of system representations for discrete-time timevarying systems, SIAM J. Control Optim., 1993, 31(b):1538-1557.
[2] Davidson K. R., Nest Algebras, Pitman Research Notes in Mathematics Series, Vol. 191, Longman Scientific and Technical Pub. Co., UK, 1988.
[3] Djouadi S. M., On robustness in the gap metric and coprime factor uncertainty for LTV systems, Syst. Control Lett., 2015, 80:16-22.
[4] Doyle J., Francis B. A., Tannenbaum A. R., Feedback Control Theory, Macmillan Publishing Co., New York, 1990.
[5] Feintuch A., On strong stabilization for linear time-varying systems, Syst. Control Lett., 2005, 54:1091-1095.
[6] Feintuch A., Robust Control Theory in Hilbert Space, Springer, 1998.
[7] Feintuch A., Robustness for time-varying systems, Mathematics of Control, Signals and Systems, 1993, 6:247-263.
[8] Feintuch A., The gap metric for time-varying systems, Syst. Control Lett., 1991, 16:277-279.
[9] Foias C., Georgiou T. T., Smith M. C., Geometric techniques for robust stabilization of linear time-varying systems, In:Proc. of the 29th CDC, December, 1990:2868-2873.
[10] Foias C., Georgiou T. T., Smith M. C., Robust stability of feedback systems:A geometric approach using the gap metric, SIAM J. Control Optim., 1993, 31:1518-1537.
[11] Georgiou T. T., Smith M. C., Optimal robustness in the gap metric, IEEE Trans. Automat. Control, 1990, 35:673-685.
[12] Georgiou T. T., On the computation of the gap metric, Syst. Control Lett., 1988, 11:253-257.
[13] Liu L., Lu Y. F., Coprime representations and feedback stabilization of discrete time-varying linear systems, International Journal of Control, Automation and Systems, 2019, 17(2):425-434.
[14] Liu L., Lu Y. F., Necessary and sufficient conditions to the transitivity in simultaneous stabilisation of time-varying systems, IET Control Theory Appl., 2013, 7(14):1834-1842.
[15] Liu L., Lu Y. F., Transitivity in simultaneous stabilization for a family of time-varying systems, Syst. Control Lett., 2015, 78:55-62.
[16] Lu Y. F., Gong T., On stabilization for discrete linear time-varying systems, Syst. Control Lett., 2011, 60:1024-1031.
[17] Lu Y. F., Xu X. P., The stabilization problem for discrete time-varying linear systems, Syst. Control Lett., 2008, 57(11):936-939.
[18] Quadrat A., The fractional representation approach to synthesis problems:An algebraic analysis viewpoint, Part Ⅱ:Internal stabilization, SIAM J. Control Optim, 2003, 42:300-320.
[19] Qiu L., Davison E. J., Feedback stability under simultaneous gap metric uncertainties in plant and controller, Syst. Control Lett., 1992, 18:9-22.
[20] Smith M. C., On stabilization and existence of coprime factorizations, IEEE Trans. Automat. Control, 1989, 34:1005-1007.
[21] Vidyasagar M., Control System Synthesis:A Factorization Approach, MIT Press, Cambridge, 1985.
[22] Vidyasagar M., The graph metric for unstable plants and robustness estimates for feedback stability, IEEE Trans. Automat. Control, 1984, 29(5):403-418.
[23] Xu X. P., Liu L., Robust stability analysis for linear systems subjected to time-varying uncertainties within the framework of nest algebra, Science Asia, 2018, 44:46-53.
[24] Yu T. Q., Bicoprime factor stability criteria for linear time-varying systems in the nest algebra, International Journal of Control, https://doi.org/10.1080/00207179.2019.1634287, 2019.
[25] Yu T. Q., Chi W., Sufficient conditions for simultaneous stabilization of three linear systems within the framework of nest algebras, Journal of the Franklin Institute, 2014, 351:5310-5325.
[26] Yu T. Q., The transitivity in simultaneous stabilization, Syst. Control Lett., 2011, 60:1-6.
[27] Yu T. Q., Yan H., Simultaneous controller design for time-varying linear systems, Syst. Control Lett., 2011, 60:1032-1037.
[28] Zames G., El-Sakkary A. K., Unstable systems and feedback:the gap metric, In:Proc. 16th Allerton Conf., 1980, 380-385.
/
〈 |
|
〉 |