On Classification of Higher-Dimensional Algebraic Varieties with Ample Vector Bundles

Zhi Yong CHEN, Fang Fang DENG

Acta Mathematica Sinica, Chinese Series ›› 2013, Vol. 56 ›› Issue (2) : 155-162.

PDF(435 KB)
PDF(435 KB)
Acta Mathematica Sinica, Chinese Series ›› 2013, Vol. 56 ›› Issue (2) : 155-162. DOI: 10.12386/A2013sxxb0016
Articles

On Classification of Higher-Dimensional Algebraic Varieties with Ample Vector Bundles

  • Zhi Yong CHEN1, Fang Fang DENG2
Author information +
History +

Abstract

Let X be a smooth projective variety of dimension n(n≥3) and ε an ample vector bundle with rank r=n-k(k≥1) over X. We denote Λ(ε,KX)=max{(-KX-c1(ε))·C|R=R+[C]∈Ω, and l(R)=-KX·C}, where KX is the canonical bundle of X, c1(ε) means the first Chern class of ε, Ω denotes the set of extremal rays R such that (KX+c1(ε))·C≤0, R+ is the set of positive real number, and l(R) is the length of R. The classification of (X, ε) will ba given when Λ(ε,KX)≥k-1.

Key words

ample vector bundles / higher-dimensional algebraic varieties / numerically effective

Cite this article

Download Citations
Zhi Yong CHEN, Fang Fang DENG. On Classification of Higher-Dimensional Algebraic Varieties with Ample Vector Bundles. Acta Mathematica Sinica, Chinese Series, 2013, 56(2): 155-162 https://doi.org/10.12386/A2013sxxb0016

References

[1] Mori S., Threefolds whose canonical bundles are not numerically effective, Ann. Math., 1982, 116: 133-176.

[2] Mori S., Flip theorem and the existence of minimal model peoblem, Amer. Math. Soc., 1988, 1: 117-253.

[3] Kawamata Y., Matsuda K., Matsuki K., Introduction to the minimal model problem, Advan. Stud. Pure Math., 2002, 10: 283-360.

[4] Sommese A. J., On the adjunction theoretic structure of projective varieties, Springer-Verlag, Berlin, 1985.

[5] Fujita T., On polarized manifolds whose adjoint bundles are not semipositive, Advan. Stud. Pure Math., 1987, 10: 167-178.

[6] Ionescu P., Generalized adjunction and application, Math. Proc. Camb. Phil. Soc., 1996, 99: 452-572.

[7] Mukai S., Problems on characterizations of the complex projective space. Birational Geometry of Algebraic Varieties-Open Problems, The 23th Inter Symp Div of Math. Katata, Japan, 1988.

[8] Ye Y. G., Zhang Q., On ample vevtor bundles whose adjunction bundles are not numerically effective, Duke. Math. J., 1990, 60: 671-688.

[9] Zhang Q., A theorem on the adjoint system for vector bundle, Manuscripta Math., 1991, 70: 189-201.

[10] Wisniewski J. A., Length of extremal rays and generalized adjunction, Math. Z., 1989, 200: 409-427.

[11] Zhao Y. C., Su J. H., Higher dimensional projective manifolds with ample vector bundles, Science in China, Ser. A, 2007, 37(10): 1137-1150.

[12] Hartshorne R., Algebraic Geometry, Springer-Verlag, New York, 1966.

[13] Wisniewski J. A., On contractions of extremal rays of Fano manifolds. J. Reine Angew. Math., 1991, 417: 141-157.

[14] Cho K., Miyaoka Y., Shepherd N. I., Characterization of projective space and applications to complex symplectic manifolds, Advan. Stud. Pure Math., 2002, 35: 1-88.

[15] Fujita T., Remarks on quasi-polarized varieties, Nagoya Math. J., 1989, 115: 105-123.

[16] Okonek C., Schneider M., Spindler H., Vector Bundles on Complex Projective Space, Birkhauser, Basel, 1980.

[17] Fujita T., On adjoint bundles of ample vector bundles, in: Lecture Notes Math., 1992, 1507: 105-112.

[18] Sato E., Uniform vector bundles on a projective space. J. Math. Soc. Japan, 1976, 28: 123-132.

[19] Lanteri A., Sommese A. J., A vector bundle characterization of Pn, Abh. Math. Sem. Univ. Hamburg, 1988, 58: 89-96.
PDF(435 KB)

228

Accesses

0

Citation

Detail

Sections
Recommended

/