Solutions of a Resonant Semilinear Elliptic Equation with Hardy Singular Terms

Yong Yi LAN, Chun Lei TANG

Acta Mathematica Sinica, Chinese Series ›› 2013, Vol. 56 ›› Issue (1) : 121-134.

PDF(484 KB)
PDF(484 KB)
Acta Mathematica Sinica, Chinese Series ›› 2013, Vol. 56 ›› Issue (1) : 121-134. DOI: 10.12386/A2013sxxb0013
Articles

Solutions of a Resonant Semilinear Elliptic Equation with Hardy Singular Terms

  • Yong Yi LAN1,2, Chun Lei TANG1
Author information +
History +

Abstract

We consider the following semilinear elliptic equation ?Δu-μ(u/|x|2 = f(x, u) with the Dirichlet boundary value, and under suitable assumptions on the nonlinear term f. Some existence results of solutions are given via the variational method.

Key words

Hardy singular terms / Dirichlet boundary condition / resonance / semilinear elliptic equation

Cite this article

Download Citations
Yong Yi LAN, Chun Lei TANG. Solutions of a Resonant Semilinear Elliptic Equation with Hardy Singular Terms. Acta Mathematica Sinica, Chinese Series, 2013, 56(1): 121-134 https://doi.org/10.12386/A2013sxxb0013

References

[1] Landesman E. M., Lazer A. C., Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 1970, 19: 609–623.

[2] Jiang M. Y., Sun M. Z., A Semilinear elliptic equation with double resonance, Acta Mathematica Sinica, English Series, 2011, 27(7): 1233–1246.

[3] Jiang M. Y., Remarks on the resonant elliptic problems, Nonlinear Anal., 2003, 53: 1193–1207.

[4] Jiang M. Y., Solutions of a Resonant Semilinear Elliptic Equation, Research Report No.92, Institute of Mathematics, Peking University, 2004.

[5] Robinson S., Multiple solutions for semilinear elliptic boundary value problem at resonance, Electron. J. Differential Equations, 1995, 1995: 1–14.

[6] Amrouss A. R. El., Multiplicity results for semilinear elliptic problems with resonance, Nonlinear Anal., 2006, 65: 634–646.

[7] Francisco O. V. de Paiva, Multiple solutions for asymptotically linear resonant elliptic problems, Topol. Methods Nonlinear Anal., 2003, 21: 227–247.

[8] Egnell H., Elliptic boundary value problems with singular coefficients and critical nonlinearities, Indiana Univ. Math. J., 1989, 21: 235–251.

[9] Ferrero A., Gazzola F., Existence of solutions for singular critical growth semi-linear elliptic equations, J. Differential Equations, 2001, 177(2): 494–522.

[10] Cao D. M., Han P. G., Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Differential Equations, 2004, 205(2): 521–537.

[11] Cao D. M., Peng S. J., A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations, 2003, 193(2): 424–434.

[12] Chen J. Q., Multiple positive solutions for a class of nonlinear elliptic equations, J. Math. Anal. Appl., 2004, 295(2): 341–354.

[13] Deng Y. B., Jin L. Y., Multiple positive solutions for a quasilinear nonhomogeneous Neumann problems with critical Hardy exponents, Nonlinear Anal., 2007, 67(12): 3261–3275.

[14] Cerami G., Uncriterio diesistenza peri punticritici suvarietã illimitate, Rend. Acad. Sci. Lett. Ist. Lombardo, 1978, 112: 332–336.
PDF(484 KB)

211

Accesses

0

Citation

Detail

Sections
Recommended

/