On the Bloch Condtaut for K-Quasiconformal Mappings in Several Complex Variables

J. Y. Gamaliel,Huai Hui CHEN

Acta Mathematica Sinica, Chinese Series ›› 2003, Vol. 46 ›› Issue (2) : 317-320.

Acta Mathematica Sinica, Chinese Series ›› 2003, Vol. 46 ›› Issue (2) : 317-320. DOI: 10.12386/A2003sxxb0041
论文

On the Bloch Condtaut for K-Quasiconformal Mappings in Several Complex Variables

  • J. Y. Gamaliel,Huai Hui CHEN
Author information +
History +

Abstract

This paper study the Bloch constant for K-quasiconformal holomorphic mappings of the unit ball B of Cn. The final result we prove is: If f is a K-quasiconformal holomorphic mappings of the unit ball B of Cn such that det (f'(0)) = 1, then f(B)contains a schlicht ball of radius at least (CnK)1-n f01(1+t)n-1/(1-t)2 exp {-(n+1)t/1-t}dt where Cn > 1 is a constant depending on n only, and Cn→ 10 as n→∞.

Cite this article

Download Citations
J. Y. Gamaliel,Huai Hui CHEN. On the Bloch Condtaut for K-Quasiconformal Mappings in Several Complex Variables. Acta Mathematica Sinica, Chinese Series, 2003, 46(2): 317-320 https://doi.org/10.12386/A2003sxxb0041

Accesses

Citation

Detail

Sections
Recommended

/