有限域上多项式指数和的p-adic估计

丁博辉, 曹炜

数学学报 ›› 2015, Vol. 58 ›› Issue (3) : 501-506.

PDF(440 KB)
PDF(440 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (3) : 501-506. DOI: 10.12386/A2015sxxb0051
论文

有限域上多项式指数和的p-adic估计

    丁博辉, 曹炜
作者信息 +

p-adic Estimates for Exponential Sums of Polynomials over Finite Fields

    Bo Hui DING, Wei CAO
Author information +
文章历史 +

摘要

f为有限域上的一个多元多项式.它的次数矩阵Df由出现在f中的次数向量构成.本文利用Df给出了多项式f的指数和的一个p-adic估计,它改进和推广了该方向许多已知的结果.

Abstract

Let f be a multivariate polynomial over a finite field. Its degree matrix Df is defined to be the matrix whose columns are the degree vectors appearing in f. In this paper, we obtain a p-adic estimate for the exponential sum of f in terms of Df, which improves and generalizes some previously known results.

关键词

有限域 / 次数矩阵 / 指数和 / p-adic估计

Key words

finite field / degree matrix / exponential sum / p-adic estimate

引用本文

导出引用
丁博辉, 曹炜. 有限域上多项式指数和的p-adic估计. 数学学报, 2015, 58(3): 501-506 https://doi.org/10.12386/A2015sxxb0051
Bo Hui DING, Wei CAO. p-adic Estimates for Exponential Sums of Polynomials over Finite Fields. Acta Mathematica Sinica, Chinese Series, 2015, 58(3): 501-506 https://doi.org/10.12386/A2015sxxb0051

参考文献

[1] Adolphson A., Sperber S., p-adic estimates for exponential sums and the theorem of Chevalley-Warning, Ann. Sci. Ecole. Norm. Sup., 1987, 20: 545-556.

[2] Ax J., Zeros of polynomials over finite fields, Amer. J. Math., 1964, 86: 255-261.

[3] Cao W., Sun Q., Improvements upon the Chevalley-Warning-Ax-Katz-type estimates, J. Number Theory, 2007, 122: 135-141.

[4] Cao W., Sun Q., On a class of equations with special degrees over finite fields, Acta Arith., 2007, 130: 195-202.

[5] Cao W., Smith normal form of augmented degree matrix and its applications, Linear Algebra Appl., 2009, 431: 1778-1784.

[6] Chen J. M., Cao W., Degree matrices and divisibility of exponential sums over finite fields, Arch. Math., 2010, 94: 435-441.

[7] Cao W., Dilation of Newton polytope and p-adic estimate, Discrete Comput. Geom., 2011, 45: 522-528.

[8] Cao W., A partial improvement of the Ax-Katz theorem, J. Number Theory, 2012, 132: 485-494.

[9] Chevalley C., Démonstration d'une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg, 1936, 11: 73-75.

[10] Hong S., L-functions of twisted diagonal exponential sums over finite fields, Proc. Amer. Math. Soc., 2007, 135: 3099-3108.

[11] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1990.

[12] Katz N. M., On a theorem of Ax, Amer. J. Math., 1971, 93: 485-499.

[13] Koblitz N., p-Adic Numbers, p-Adic Analysis and Zeta Functions, Springer-Verlag, New York, 1996.

[14] Lidl R., Niederreiter H., Finite Fields, Second Edition, Cambridge Univ. Press, Cambridge, 1997.

[15] Warning E., Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math. Sem. Univ. Hamburg, 1936, 11: 76-83.

基金

国家自然科学基金资助项目(11371208); 宁波市自然科学基金(2013A610102, 2014A610017)

PDF(440 KB)

298

Accesses

0

Citation

Detail

段落导航
相关文章

/