对称群 S5与循环群 C3直积的整群环的挠单位

吴洪毅, 海进科

数学学报 ›› 2022, Vol. 65 ›› Issue (3) : 405-414.

PDF(424 KB)
PDF(424 KB)
数学学报 ›› 2022, Vol. 65 ›› Issue (3) : 405-414. DOI: 10.12386/A2022sxxb0032
论文

对称群 S5与循环群 C3直积的整群环的挠单位

    吴洪毅, 海进科
作者信息 +

The Torsion Unit of the Integral Ring of the Direct Product of the Symmetric Group S5 and the Cyclic Group C3

    Hong Yi WU, Jin Ke HAI
Author information +
文章历史 +

摘要

本文研究了五次对称群S5与三阶循环群C3直积的整群环的正规化挠单位.作为应用, 证明了S5×C3满足Zassenhaus猜想.

Abstract

In this paper, we investigate the normalized torsion units of the integral group ring of the direct product of the symmetric group S5 and the cyclic group C3. As a consequence, we confirm the Zassenhaus's conjecture about this group.

关键词

整群环 / 挠单位 / 偏增广 / Zassenhaus猜想

Key words

integral group ring / torsion unit / the partial augmentation / Zassenhaus's conjecture

引用本文

导出引用
吴洪毅, 海进科. 对称群 S5与循环群 C3直积的整群环的挠单位. 数学学报, 2022, 65(3): 405-414 https://doi.org/10.12386/A2022sxxb0032
Hong Yi WU, Jin Ke HAI. The Torsion Unit of the Integral Ring of the Direct Product of the Symmetric Group S5 and the Cyclic Group C3. Acta Mathematica Sinica, Chinese Series, 2022, 65(3): 405-414 https://doi.org/10.12386/A2022sxxb0032

参考文献

[1] Bächle A., Herman A., Konovalov A., et al., The status of the Zassenhaus conjecture for small groups, Experiment. Math., 2018, 27(4): 431–436.
[2] Bächle A., Kimmerle W., On torsion subgroups in integral group rings of finite groups, J. Algebra, 2011, 326: 34–46.
[3] Bächle A., Kimmerle W., Serrano M., On the first Zassenhaus conjecture and direct products, Canad. J. Math., 2020, 72(3): 602–624.
[4] Bovdi V., Häfert C., Kimmerle W., On the first Zassenhaus conjecture for integral group rings, Publ. Math. Debrecen, 2004, 65(3–4): 291–303.
[5] Caicedo M., Margolis L., del Rĺo Á., Zassenhaus conjecture for cyclic-by-abelian groups, J. London Math. Soc., 2013, 88(1): 65–78.
[6] Eisele F., Margolis L., A counterexample to the first Zassenhaus conjecture, Adv. Math., 2018, 339: 599–641.
[7] Hai J. K., Guo J. D., A Note on Zassenhaus’s conjecture, Acta Math. Sin., Chin. Ser., 2018, 61(3): 441–446.
[8] Hai J. K., Lv X. X., The torsion unite of the integral group ring of the direct product of the alternative group A5 and the dihedral group D6, Acta Math. Sin., Chin. Ser., 2017, 60(6): 983–992.
[9] Herman A., Singh G., Revisiting the Zassenhaus Conjecture on torsion units for the integral group rings of small groups, Proc. Indian Acad. Sci. Math. Sci., 2015, 125(2): 167–172.
[10] Hertweck M., Torsion units in integral group rings of certain metabelian groups, Proc. Edinb. Math. Soc., 2008, 51: 363–385.
[11] Hertweck M., On the torsion units of some integral group rings, Algebra Colloq., 2006, 13(2): 329–348.
[12] Hertweck M., Zassenhaus conjecture for A6, Proc. Indian Acad. Sci. Math. Sci., 2008, 118(2): 189–195.
[13] Höfert C., Kimmerle W., On torsion units of integral group rings of groups of small order, In: Groups, Rings and Group Rings, Lecture Notes in Pure and Applied Mathematics, Vol. 248, Chapman & Hall/CRC, Bocao Raton, 2006, 243–252.
[14] Luthar I. S., Passi I. B. S., Zassenhaus conjecture for A5, Proc. Indian Acad. Sci. Math. Sci., 1989, 99(1): 1–5.
[15] Luthar I. S., Sehdal P., Torsion units in integral group rings of some metacyclic groups, Res. Bull. Panjab Univ. Sci, 1998, 48: 137–153.
[16] Marciniak Z., Ritter J., Sehgal S. K., et al., Torsion units in integral group rings of some metabelian groups II, J. Number Theory, 1987, 25(3): 340–352.
[17] Sehgal S. K., Units in Integral Group Rings, Longman Scientific and Technical Press, Harlow, 1993.
[18] Sehgal S. K., Weiss A., Torsion units in integral group rings of some metabelian groups, J. Algebra, 1986, 103(2): 490–499.
[19] Weiss A., Torsion units in integral group rings. J. Reine Angew. Math., 1991, 415: 175–187.
[20] The GAP Group, GAP–Groups, Algorithms, and Programming. Version 4.6.3, 2006(http://www.gapsystem.org)

基金

基金项目:国家自然科学基金资助项目(11871292)
PDF(424 KB)

678

Accesses

0

Citation

Detail

段落导航
相关文章

/