二阶线性微分方程解的复动力性质

吴秀碧, 李雪

数学学报 ›› 2025, Vol. 68 ›› Issue (1) : 165-172.

PDF(450 KB)
PDF(450 KB)
数学学报 ›› 2025, Vol. 68 ›› Issue (1) : 165-172. DOI: 10.12386/A20220104
论文

二阶线性微分方程解的复动力性质

    吴秀碧, 李雪
作者信息 +

Complex Dynamical Properties of Solutions of Second Order Differential Equations

    Xiubi Wu, Xue Li
Author information +
文章历史 +

摘要

关于亚纯函数Julia集的研究一直是复动力系统的热点问题之一. 本文通过研究二阶线性微分方程解在角域的增长性质, 就其Julia集的径向分布情况, 给出了更为精确的下界估计.

Abstract

Research on the Julia sets of meromorphic functions has been one of the hot problems in complex dynamical systems. In the paper, we gave some more accurate estimations of the lower bound of the radial distribution of Julia sets by investigating the growth of solutions of second-order differential equations.

关键词

零点聚值线 / 亏值 / Julia集 / 径向分布

Key words

Accumulative line of zero-sequence / Deficient value / Julia set / Radial distribution

引用本文

导出引用
吴秀碧 , 李雪. 二阶线性微分方程解的复动力性质. 数学学报, 2025, 68(1): 165-172 https://doi.org/10.12386/A20220104
Xiubi Wu , Xue Li. Complex Dynamical Properties of Solutions of Second Order Differential Equations. Acta Mathematica Sinica, Chinese Series, 2025, 68(1): 165-172 https://doi.org/10.12386/A20220104
中图分类号: O177.2   

参考文献

[1] Baker I. N., Sets of non-normality in iteration theory, J. London Math. Soc., 1965, 40: 499-502.
[2] Bergweiler W., Iteration of meromorphic functions, Bull. Amer. Math. Soc., 1993, 29: 151-188.
[3] Fuchs W. H. J., Topics in Nevanlinna theory, In: Proceedings of the NRL conference on Classical Function Theory, Naval Research Laboratory, Washington, D. C., 1970, 1-32.
[4] Gundersen G. G., On the real zeros of solutions of f''+ A(z)f = 0 where A(z) is entire, Ann. Acad. Sci. Fenn. Math., 1986, 11: 275-294.
[5] Gundersen G. G., Heittokangas J., Zemimi A., Asymptotic integration theory for f'' +P (z)f = 0. Expositions Math., 2022, 40(1): 94-126.
[6] Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
[7] Huang Z. G., Wang J., On the radial distribution of Julia sets of entire solutions of f(n) + A(z)f = 0, J. Math. Anal. Appl., 2012, 387: 1106-1113.
[8] Huang Z. G., Wang J., Fatou sets of entire solutions of linear differential equations, J. Math. Anal. Appl., 2014, 409: 275-281.
[9] Huang Z. G., Wang J., On limiting directions of Julia sets of entire solutions of linear differential equations, J. Math. Anal. Appl., 2014, 409: 478-484.
[10] Long J. R., Shi L., Wu X. B., et al., On a question of Gundersen concerning the growth of solutions of linear differential equations, Ann. Acad. Sci. Fenn. Math., 2018, 43: 337-348.
[11] Long J. R., Wu T. M., Wu X. B., Growth of solutions of complex differential equations with solutions of another equation as coefficients, Comput. Methods Funct. Theory, 2019, 19(1): 3-16.
[12] Qiao J. Y., Stable domains in the iteration of entire function (in Chinese), Acta Math. Sin., 1994, 37: 702-709.172
[13] Qiao J. Y., On limiting directions of Julia sets, Ann. Acad. Sci. Fenn. Math., 2001, 26: 391-399.
[14] Qiu L., Wu S. J., Radial distributions of Julia sets of meromorphic functions, J. Austral. Math. Soc., 2006, 81(3): 363-368.
[15] Shin K. C., New polynomials P (z) for which f''+ P (z)f = 0 has a solution with almost all real zeros, Ann. Acad. Sci. Fenn. Math., 2002, 27: 491-498.
[16] Wang J., Chen X., Limiting directions of Julia sets of entire solutions to complex differential equations, Acta Math. Sci., 2017, 37B(1): 97-107.
[17] Yang L., Value Distribution Theory, Translated and revised from the 1982 Chinese original, Springer-Verlag, Berlin, Science Press Beijing, Beijing, 1993.
[18] Zheng J. H., Some properties of Fatou and Julia sets of transcendental meromorphic functions, Bull. Austral. Math. Soc., 2002, 81(3): 1-8.
[19] Zheng J. H., Dynamics of Transcendental Meromorphic Functions, Monograph of Tsinghua University, Tsinghua University Press, Beijing, 2006.

基金

贵州大学人才引进基金(201918)
PDF(450 KB)

548

Accesses

0

Citation

Detail

段落导航
相关文章

/