
无界拉普拉斯算子下图上的泛函不等式
Functional Inequalities on Graph with Unbounded Laplacians
本文探讨图上的泛函不等式,并且在无界拉普拉斯算子的意义下,利用图的完备性和图上超压缩性的性质,证明了图上对数Sobolev不等式的成立,以及超压缩性与图上Nash不等式的等价关系.
In this paper, we mainly talk about the functional inequalities on graph. With unbounded Laplacians, by use of the completeness and ultracontractivity, we prove the log-Sobolev inequality and that the ultracontractivity is equal to Nash inequality on graph.
无界拉普拉斯算子 / 对数Sobolev不等式 / Nash不等式 {{custom_keyword}} /
unbounded Laplacian / log-Sobolev inequality / Nash inequality {{custom_keyword}} /
[1] Bakery D., Gentil I., Ledoux M., Analysis and Geometry of Markov Diffusion Operators, Number 348 in Grundlehren der Mathematischen Wissenschaften, Springer, Cham, 2014.
[2] Bauer F., Horn P., Lin Y., et al., Li-Yau inequality on graphs, J. Diff. Geom., 2015, 99:359-405.
[3] Chung F., Spectral Graph Theory, CBMS Regional Congerence Series in Mahtematics, 92, American Mathemeatical Society, Providence, RI, 1997.
[4] Fukushima M., Oshima Y., Takeda M., Drichlet forms and symmetric Markov processes, volume 19 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co, 2011.
[5] Gong C., Lin Y., Equivalent properties for CD inequality on graph with Unbounded Laplacians, Chinese Ann. Math., Ser. B, 2017, 38:1059-1070.
[6] Haeseler S., Keller M., Lenz D., et al., Laplacians on infinite graphs:Drichlet and Neumann boundary conditions, J. Spectr. Theory, 2012, 2(4):397-432.
[7] Pual H., Lin Y., Liu S., et al., Volume doubling, Poincarè inequality and Guassian heat kernel estimate for nonnegative curvature graphs, Journal für die reine und angewandte Mathematik (Crelles Journal), ISSN (Online) 1435-5345, ISSN (Print) 0075-4102.
[8] HUA B., Lin Y., Stochastic completeness for graphs, Adv. Math., 2017, 306:279-302.
[9] Keller M., Lenz D., Unbounded Laplacians on graphs:basic spectral properties and the heat equation, Mathematical Modelling of Natural Phenomena, 2011, 5(4):198-224.
[10] Keller M., Lenz D., Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Fur Die Reine Und Angewandte Mathematik, 2012, 2012(666):1074-1076.
[11] Lin Y., Liu S., Equivalent properties of CD inequality on graphs, arXiv:1512.02677.
[12] Lin Y., Liu S., Song H., Log-Sobolev Inequalities on Graphs with Positive Curvature, Математ. физика и компьютер. моделирование}, 2017. T. 20. No. 3.
[13] Lin Y., Liu S., Song H., Ultracontractivity and functional inequalities on infinite graphs, preprint.
[14] Lin Y., Yau S. T., Ricci curvature and eigenvalue estimate on locally finite graphs, Math. Res. Lett., 2010, 17(2):343-356.
[15] Yau S. T., Schoen R., Lectures on Differential Geometry in Chinese, Higher Education Press, Beijing, 2014.
/
〈 |
|
〉 |