无界拉普拉斯算子下图上的泛函不等式

公超, 林勇

数学学报 ›› 2018, Vol. 61 ›› Issue (3) : 503-510.

PDF(408 KB)
PDF(408 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (3) : 503-510. DOI: 10.12386/A2018sxxb0044
论文

无界拉普拉斯算子下图上的泛函不等式

    公超, 林勇
作者信息 +

Functional Inequalities on Graph with Unbounded Laplacians

    Chao GONG, Yong LIN
Author information +
文章历史 +

摘要

本文探讨图上的泛函不等式,并且在无界拉普拉斯算子的意义下,利用图的完备性和图上超压缩性的性质,证明了图上对数Sobolev不等式的成立,以及超压缩性与图上Nash不等式的等价关系.

Abstract

In this paper, we mainly talk about the functional inequalities on graph. With unbounded Laplacians, by use of the completeness and ultracontractivity, we prove the log-Sobolev inequality and that the ultracontractivity is equal to Nash inequality on graph.

关键词

无界拉普拉斯算子 / 对数Sobolev不等式 / Nash不等式

Key words

unbounded Laplacian / log-Sobolev inequality / Nash inequality

引用本文

导出引用
公超, 林勇. 无界拉普拉斯算子下图上的泛函不等式. 数学学报, 2018, 61(3): 503-510 https://doi.org/10.12386/A2018sxxb0044
Chao GONG, Yong LIN. Functional Inequalities on Graph with Unbounded Laplacians. Acta Mathematica Sinica, Chinese Series, 2018, 61(3): 503-510 https://doi.org/10.12386/A2018sxxb0044

参考文献

[1] Bakery D., Gentil I., Ledoux M., Analysis and Geometry of Markov Diffusion Operators, Number 348 in Grundlehren der Mathematischen Wissenschaften, Springer, Cham, 2014.
[2] Bauer F., Horn P., Lin Y., et al., Li-Yau inequality on graphs, J. Diff. Geom., 2015, 99:359-405.
[3] Chung F., Spectral Graph Theory, CBMS Regional Congerence Series in Mahtematics, 92, American Mathemeatical Society, Providence, RI, 1997.
[4] Fukushima M., Oshima Y., Takeda M., Drichlet forms and symmetric Markov processes, volume 19 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co, 2011.
[5] Gong C., Lin Y., Equivalent properties for CD inequality on graph with Unbounded Laplacians, Chinese Ann. Math., Ser. B, 2017, 38:1059-1070.
[6] Haeseler S., Keller M., Lenz D., et al., Laplacians on infinite graphs:Drichlet and Neumann boundary conditions, J. Spectr. Theory, 2012, 2(4):397-432.
[7] Pual H., Lin Y., Liu S., et al., Volume doubling, Poincarè inequality and Guassian heat kernel estimate for nonnegative curvature graphs, Journal für die reine und angewandte Mathematik (Crelles Journal), ISSN (Online) 1435-5345, ISSN (Print) 0075-4102.
[8] HUA B., Lin Y., Stochastic completeness for graphs, Adv. Math., 2017, 306:279-302.
[9] Keller M., Lenz D., Unbounded Laplacians on graphs:basic spectral properties and the heat equation, Mathematical Modelling of Natural Phenomena, 2011, 5(4):198-224.
[10] Keller M., Lenz D., Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Fur Die Reine Und Angewandte Mathematik, 2012, 2012(666):1074-1076.
[11] Lin Y., Liu S., Equivalent properties of CD inequality on graphs, arXiv:1512.02677.
[12] Lin Y., Liu S., Song H., Log-Sobolev Inequalities on Graphs with Positive Curvature, Математ. физика и компьютер. моделирование}, 2017. T. 20. No. 3.
[13] Lin Y., Liu S., Song H., Ultracontractivity and functional inequalities on infinite graphs, preprint.
[14] Lin Y., Yau S. T., Ricci curvature and eigenvalue estimate on locally finite graphs, Math. Res. Lett., 2010, 17(2):343-356.
[15] Yau S. T., Schoen R., Lectures on Differential Geometry in Chinese, Higher Education Press, Beijing, 2014.

PDF(408 KB)

360

Accesses

0

Citation

Detail

段落导航
相关文章

/