C*-代数的Murray-von Neumann分类理论的抽象架构

吴志强, 黄毅青

数学学报 ›› 2017, Vol. 60 ›› Issue (1) : 159-172.

PDF(640 KB)
PDF(640 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (1) : 159-172. DOI: 10.12386/A2017sxxb0014
论文

C*-代数的Murray-von Neumann分类理论的抽象架构

    吴志强1, 黄毅青2
作者信息 +

An Abstract Framework for Murray-von Neumann Type Classification Schemes of C*-algebras

    Chi Keung NG1, Ngai Ching WONG2
Author information +
文章历史 +

摘要

Murray和von Neumann在对W*-代数进行分类工作时,主要的工具是刻画W*-代数中的投影的性质(事实上,W*-代数是由投影所生成的).因为一般的C*-代数可能不包含任何非零的投影,所以不能将Murray和von Neumann的方法,直接地应用到C*-代数上来得出分类理论.本文作者在最近的两项工作中,分别使用C*-代数的开投影和正元来代替投影,得到两套平行的Murray-von Neumann式的分类理论.本文在简单描述了这两套分类理论之后,将会给出一个一般的分类架构,它可以用来得出好些C*-代数的分类理论(包括我们之前的两套理论),我们也会通过它来讨论各种分类理论之间的等价性,并给出之前两套理论的细化.

Abstract

The famous work of Murray and von Neumann about decomposing W*-algebras into different types(which is known as the classification theory of W*-algebras) is based on the study of projections in W*-algebras.Different from W*-algebras(which are generated by projections), a C*-algebra may contain no non-zero projection.Therefore, we cannot transport the classification theory of Murray and von Neumann directly to C*-algebras.In our recent works, we have developed two classifying(or decomposition) schemes of C*-algebras using the properties of their open projections and properties of their positive elements, respectively.In this note, after a briefing of our two classifying schemes of C*-algebras, we introduce a more general classification framework that, on top of giving many other possible schemes, can be used to obtain, compare and refine the two classification schemes mentioned above.

关键词

C*-代数 / 开投影 / 正元 / Murray-von Neumann分类

Key words

C*-algebras / open projections / positive elements / Murray-von Neumann classification

引用本文

导出引用
吴志强, 黄毅青. C*-代数的Murray-von Neumann分类理论的抽象架构. 数学学报, 2017, 60(1): 159-172 https://doi.org/10.12386/A2017sxxb0014
Chi Keung NG, Ngai Ching WONG. An Abstract Framework for Murray-von Neumann Type Classification Schemes of C*-algebras. Acta Mathematica Sinica, Chinese Series, 2017, 60(1): 159-172 https://doi.org/10.12386/A2017sxxb0014

参考文献

[1] Akemann C. A., The General Stone-Weierstrass problem, J. Funct. Anal., 1969, 4:277-294.
[2] Akemann C. A., Left ideal structure of C*-algebras, J. Funct. Anal., 1970, 6:305-317.
[3] Akemann C. A., Eilers S., Regularity of projections revisited, J. Operator Theory, 2002, 48:515-534.
[4] Akemann C. A., Pedersen G. K., Complications of semicontinuity in C*-algebra theory, Duke Math. J., 1973, 40:785-795.
[5] Brown L. G., Semicontinuity and multipliers of C*-algebras, Canad. J. Math., 1988, XL(4):865-988.
[6] Cuntz J., Pedersen G. K., Equivalence and traces on C*-algebras, J. Funct. Anal., 1979, 33:135-164.
[7] Effros E. G., Order ideals in C*-algebras and its dual, Duke Math. J., 1963, 30:391-412.
[8] Elliott G. A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Alg., 1976, 38:29-44.
[9] Elliott G. A., On the classification of C*-algebras of real rank zero, J. Reine Angew. Math., 1993, 443:179-219.
[10] Elliott G. A., Toms A. S., Regularity properties in the classification program for separable amenable C*-algebras, Bull. Amer. Math. Soc., 2008, 45:229-245.
[11] Kadison R. V., Ringrose J. R., Fundamentals of the Theoryof Operator Algebras Vol. Ⅱ:Advanced Theory, Pure and Applied Mathematics, Academic Press, 1986, 100.
[12] Li B., Operator Algebras, Science Press, Beijing, 1986.
[13] Li B., Introductionto Operator Algebras, World Scientific, Singapore, 1992.
[14] Lin H., Equivalent openprojections and corresponding hereditary C*-subalgebras, J. Lond. Math. Soc., 1990, 41:295-301.
[15] Murphy G. J., C*-algebras and Operator Theory, Academic Press, San Diego, CA, 1990.
[16] Murray F. J., The Rings of Operators Papers, in The legacy of John von Neumann(Hempstead, NY, 1988), 57-60, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I. 1990:50.
[17] Murray F. J., Von Neumann, On rings of operators, Ann. of Math., 1936, 37(2):116-229.
[18] Ng C. K., Wong N. C., A Murray-von Neumann Type Classification of C*-algebras, in Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Herrnhut, Germany(in honor of Prof. Charles Battyfor his 60th birthday), Operator Theory:Advance and Applications, Springer Internat. Publ., 2015, 250:369-395.
[19] Ng C. K., Wong N. C., Comparisons of equivalence relations on open projections, J. Operator Theory, 2015, 74:101-123.
[20] Ng C. K., Wong N. C., On the decomposition into discrete, type Ⅱ and type Ⅲ C*-algebras, preprint(arXiv:1310.5464v4).
[21] Ortega E., Rørdam M., Thiel H., The Cuntz semigroup and comparison of open projections, J. Funct. Anal., 2011, 260:3474-3493.
[22] Pedersen G. K., Applications of weak*-semicontinuity in C*-algebra theory, Duke Math. J., 1972, 39:431-450.
[23] Pedersen G. K., C*-algebras and Their Automorphism Groups, Academic Press, 1979.
[24] Peligrad C., Zsidó L., Open projections of C*-algebras:Comparisonand Regularity, in Operator Theoretical Methods, 17th Int. Conf. onOperator Theory, Timisoara(Romania), June 23-26, 1998, Theta Found. Bucharest, 2000:285-300.
[25] Prosser R. T., On the ideal structure of operator algebras, Memoirs Amer. Math. Soc., 1963:45.
[26] Rørdam M., Classification of nuclear, simple C*-algebras, in Classification of nuclear C*-algebras, Entropy in operator algebras, Encyclopaedia Math. Sci., Springer, Berlin, 2002, 126:1-145.
[27] Toms A. S., On the classification problem for nuclear C*-algebras, Ann. of Math., 2008, 167(2):1029-1044.
[28] Zhang S., Stable isomorphism of hereditary C*-subalgebras and stable equivalence of openprojections, Proc. Amer. Math. Soc., 1989, 105:677-682.

基金

国家自然科学基金资助项目(11471168)

PDF(640 KB)

407

Accesses

0

Citation

Detail

段落导航
相关文章

/