一类非均匀恒化器竞争模型的全局分歧和渐近行为

王艳娥, 吴建华, 聂华

数学学报 ›› 2011, Vol. 54 ›› Issue (3) : 397-408.

PDF(472 KB)
PDF(472 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (3) : 397-408. DOI: 10.12386/A2011sxxb0040
论文

一类非均匀恒化器竞争模型的全局分歧和渐近行为

    王艳娥, 吴建华, 聂华
作者信息 +

The Global Bifurcation and Asymptotic Behavior of a Competition Model in the Unstirred Chemostat

    Yan E WANG, Jian Hua WU, Hua NIE
Author information +
文章历史 +

摘要

研究了一类带有B-D型功能反应函数的非均匀恒化器模型.首先,以物种v的生长率为分歧参数,利用全局分歧理论,得到了该系统的全局结构.其次,利用抛物型方程的比较原理,正则化理论及Lyapunov函数,研究了该模型解的渐近行为.  

Abstract

An unstirred chemostat model with B-D functional response is discussed. First, we treat the growth rate of v as the bifurcation parameter to obtain the global structure of this system by the theorem of global bifurcation. Second, by the means of comparison principle, regularity theorem and Lyapunov function, the asymptotic behavior of solutions of the system is considered.  

关键词

恒化器 / 全局分歧 / 渐近行为

Key words

chemostat / global bifurcation / asymptotic behavior

引用本文

导出引用
王艳娥, 吴建华, 聂华. 一类非均匀恒化器竞争模型的全局分歧和渐近行为. 数学学报, 2011, 54(3): 397-408 https://doi.org/10.12386/A2011sxxb0040
Yan E WANG, Jian Hua WU, Hua NIE. The Global Bifurcation and Asymptotic Behavior of a Competition Model in the Unstirred Chemostat. Acta Mathematica Sinica, Chinese Series, 2011, 54(3): 397-408 https://doi.org/10.12386/A2011sxxb0040

参考文献

[1] Smith H. L., Waltman P., The Theory of the Chemostat, Cambridge: Cambridge Univ. Press, 1995.



[2] So W. H., Waltman P., A nonlinear boundary value problem arising from competition in the chemostat, Appl.Math. Comput., 1989, 32: 169-183.



[3] Baxley J., Robinson S., Coexistence in the unstirred chemostat, Appl. Math. Comput., 1998, 89: 41-65.



[4] Le D., Smith H. L., A parabolic system modeling microbial competition in an unmixed bio-reactor, J. DifferentialEquations, 1996, 130: 59-91.



[5] Hsu S. B., Waltman P., On a system of reaction-diffusion equations arising from competition in the unstirredchemostat, SIAM J. Appl. Math., 1993, 53: 1026-1044.



[6] Hsu S. B., Smith H. L., Waltman P., Dynamics of competition in the unstirred chemstat, Canad. Appl. Math.Quart., 1994, 2: 461-483.



[7] Wu J. H., Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal.,2000, 39: 817-835.



[8] Nie H., Wu J. H., A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor,Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2006, 16(4): 989-1009.



[9] Nie H., Wu J. H., Asymptotic behavior of an unstirred chemostat model with internal inhibitor, J. Math.Anal. Appl., 2007, 334: 889-908.



[10] Wu J. H., Wolkowicz G. S. K., A system of resource-based growth models with two resources in the un-stirredchemostat, J. Differential Equations, 2001, 172: 300-332.



[11] Wu J. H., Nie H., Wolkowicz G. S. K., A mathematical model of competition for two essential resources inthe unstirred chemostat, SIAM J. Appl. Math., 2004, 65: 209-229.



[12] Nie H., Wu J. H., Positive solutions of a competition model for two resources in the unstirred chemostat, J.Math. Anal. Appl., 2009, 355: 231-242.



[13] Beddington J. R., Mutual interference between parasites or predators and its effect on searching efficiency,J. Animal Ecol., 1975, 44: 331-340.



[14] DeAngelis D. L., Goldstein R. A., O’Neill R. V., A model for trophic interaction, Ecology, 1975, 56: 881-892.



[15] Huisman G., Boer R. J., A formal derivation of the “Beddington” functional response, J. Theor. Biol., 1997,185: 389-400.



[16] Wang Y. E., Wu J. H., The existence and stability of coexistence for a chemostat model, J. Shaanxi NormalUniversity (Natural Science Edition), 2006, 34(2): 9-12 (in Chinese).



[17] Figueiredo D. G., Gossez J. P., Strict monotonicity of eigenvalues and unique continuation, Comm. PartialDifferential Equations, 1992, 17: 339-346.



[18] Rabinowitz P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7: 487-513.



[19] Smoller J., Shock Waves and Reaction-Diffusion Equations, New York: Springer-Verlag, 1983.



[20] Ye Q. X., Li Z. Y., Introduction to Reaction-Diffusion Equations, Beijing: Science Press, 1990.

基金

国家自然科学基金资助项目(10971124,11001160);教育部高等学校博士学科点专项科研基金资助项目(200807180004)

PDF(472 KB)

246

Accesses

0

Citation

Detail

段落导航
相关文章

/