具有细链双曲无穷远鞍点的二次系统

张平光

数学学报 ›› 1999, Vol. 42 ›› Issue (1) : 175-180.

PDF(364 KB)
PDF(364 KB)
数学学报 ›› 1999, Vol. 42 ›› Issue (1) : 175-180. DOI: 10.12386/A1999sxxb0027
论文

具有细链双曲无穷远鞍点的二次系统

    张平光
作者信息 +

Quadrati Systems with Weak Pairing Infinitehyperbolic Saddles

    Ping Guang ZHANG
Author information +
文章历史 +

摘要

本文得到:具有细链双曲无穷远鞍点和一个细焦点的二次系统至多存在一个极限环,若有细无穷远分界线环S,则其内部不存在极限环,其稳定性与它包围的奇点的稳定性相反.

Abstract

In this paper, we prove that a quadratic system with a weak focus and weak pairing infinitehyperbolic saddles has at most one limit cycle, and that if this system has a weak infinite homoclinic loop, then its stability is contrary to that of the singular point surrounded by it, and this system has no limit cycle in the region formed by it.

关键词

极限环 / 无穷远双曲鞍点 / 二次系统 / 分界线环

引用本文

导出引用
张平光. 具有细链双曲无穷远鞍点的二次系统. 数学学报, 1999, 42(1): 175-180 https://doi.org/10.12386/A1999sxxb0027
Ping Guang ZHANG. Quadrati Systems with Weak Pairing Infinitehyperbolic Saddles. Acta Mathematica Sinica, Chinese Series, 1999, 42(1): 175-180 https://doi.org/10.12386/A1999sxxb0027
PDF(364 KB)

266

Accesses

0

Citation

Detail

段落导航
相关文章

/