具有泛函解的二维非线性双曲型守恒律组

胡家信

数学学报 ›› 1999, Vol. 42 ›› Issue (1) : 41-48.

PDF(479 KB)
PDF(479 KB)
数学学报 ›› 1999, Vol. 42 ›› Issue (1) : 41-48. DOI: 10.12386/A1999sxxb0007
论文

具有泛函解的二维非线性双曲型守恒律组

    胡家信
作者信息 +

A Two-dimensional Hyperbolic System of Nonlinear Conservation Laws with Functional Solutions

    Jia Xin HU
Author information +
文章历史 +

摘要

本文考虑初值是分片常数且间断线经过原点的一类二维非线性双曲型守恒律组.解包含一类新的波──称之为Dirac-接触波.本文给出了这种Dirac-接触波的熵条件,方程组的解可以视为上有界线性泛函.

Abstract

A two-dimensional hyperbolic system of nonlinear conservation laws was considered for any piecewise constant initial data having two discontinuity rays with the origin as vertex. One kind of new waves, which was labelled as the Dirac-contact wave, appeared in the solution. The entropy conditions for the Dirac-contact waves were given. The solutions on the Dirac-contact waves can be viewed as the bounded linear functionals on C(R2×R+).

关键词

守恒律 / Dirac-接触波 / 黎曼问题

引用本文

导出引用
胡家信. 具有泛函解的二维非线性双曲型守恒律组. 数学学报, 1999, 42(1): 41-48 https://doi.org/10.12386/A1999sxxb0007
Jia Xin HU. A Two-dimensional Hyperbolic System of Nonlinear Conservation Laws with Functional Solutions. Acta Mathematica Sinica, Chinese Series, 1999, 42(1): 41-48 https://doi.org/10.12386/A1999sxxb0007
PDF(479 KB)

215

Accesses

0

Citation

Detail

段落导航
相关文章

/