给定能量的N体型问题多个几何上不同的周期轨道的存在性

张世清

数学学报 ›› 1996, Vol. 39 ›› Issue (3)

PDF(420 KB)
PDF(420 KB)
数学学报 ›› 1996, Vol. 39 ›› Issue (3) DOI: 10.12386/A1996sxxb0058
论文

给定能量的N体型问题多个几何上不同的周期轨道的存在性

    张世清
作者信息 +

The Existence of Multiple Geometrically Distinct Preiodic Orbits with Prescribed Energy for N-Body-Type Problems

Author information +
文章历史 +

摘要

本文利用等变的Ljusternik-Schnirelmann理论证明了平面上的一类给定能量的N体型问题至少存在2·(N—2)·2N-3个几何上不同的非碰撞周期轨道.

Abstract

Using the equivariant Ljusternik-Schnirelmann theory, we prove that there are at least 2·(N-2)·N-3 geometrically distinct noncollision orbits with prescribed energy for a class of planar N-body-type problems.

关键词

几何上不同的周期轨道 / N体型问题 / 等变Ljusternik-Schnirelmann理论

引用本文

导出引用
张世清. 给定能量的N体型问题多个几何上不同的周期轨道的存在性. 数学学报, 1996, 39(3) https://doi.org/10.12386/A1996sxxb0058
The Existence of Multiple Geometrically Distinct Preiodic Orbits with Prescribed Energy for N-Body-Type Problems. Acta Mathematica Sinica, Chinese Series, 1996, 39(3) https://doi.org/10.12386/A1996sxxb0058
PDF(420 KB)

553

Accesses

0

Citation

Detail

段落导航
相关文章

/