闭逐块光滑流形上的Cauchy-Fantappie型积分的边界性质

林良裕

数学学报 ›› 1995, Vol. 38 ›› Issue (1)

数学学报 ›› 1995, Vol. 38 ›› Issue (1) DOI: 10.12386/A1995sxxb0016
论文

闭逐块光滑流形上的Cauchy-Fantappie型积分的边界性质

    林良裕
作者信息 +

Boundary Behaviour for the Integrals of Cauchy-Fantappie Type on a Closed Piece- wise Smooth Manifold

Author information +
文章历史 +

摘要

对C ̄n空间中具有逐块C ̄(1)光滑可定向边界D的有界域D和著名的Cauchy-Fantappie公式,本文定义一类与Bochner-Martinelli核同伦等价的C-F核Ω,应用同伦方法证明具有Holder密度的相应奇异积分F(t)存在哥西主值和C-F型积分F(z)存在满足Holder条件的内、外极限值F ̄+(t)和F ̄-(t);同时建立一个更一般的含有边界上点t的立体角系数α(t)的Plemelj公式。

Abstract

For the bounded domain D in the space C ̄n with orientable piecewise smooth bound-ary D of class C ̄(1),and the well known Cauchy-Fantappie integral formula, the author definesakind of Cauchy-Fantappie kernel Ω which is homotopy equivalent to Bochner-Martinelli kernel.and uses homotopy method to prove that the singular integraI F(t) with kernel Ω and Holdercontinuity density f (t) possess Cauchy principal value and the C-F type integral F(z) possessinner and outer limit value F ̄+(t)and F(t)satisfying the Holder condition; and the authorest ablishes a more general Plemelj formula which involves a solid angle coefficient α(t)at thepoint t ∈D。

关键词

同伦等价 / 边界性质 / 多复变数 / Cauchy-Fantappe型积分

引用本文

导出引用
林良裕. 闭逐块光滑流形上的Cauchy-Fantappie型积分的边界性质. 数学学报, 1995, 38(1) https://doi.org/10.12386/A1995sxxb0016
Boundary Behaviour for the Integrals of Cauchy-Fantappie Type on a Closed Piece- wise Smooth Manifold. Acta Mathematica Sinica, Chinese Series, 1995, 38(1) https://doi.org/10.12386/A1995sxxb0016

171

Accesses

0

Citation

Detail

段落导航
相关文章

/