Acta Mathematica Sinica, Chinese Series 鈥衡�� 2006, Vol. 49 鈥衡�� Issue (3): 529-538.DOI: 10.12386/A2006sxxb0067
鈥� 璁烘枃 鈥� Previous Articles Next Articles
Xiao Hong CAO
Received:
Revised:
Online:
Published:
Contact:
鏇瑰皬绾�;
閫氳浣滆��:
Abstract: When A鈭圔(H1), B鈭圔(H2) and C鈭圔(H3) are given, we denote by M(D,E,F) an operator, acting on the Hilbert space H1H2H3, of the form M(D, E, F)= . In this paper, we give the necessary and sufficient condition for M(D,E,F) to be upper semi-Fredholm (lower semi-Fredholm) operator for some D鈭圔(H2,H1), E鈭圔(H3,H1), F鈭圔(H3,H2). Weyl type theorems are liable to fail for 2脳2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, 伪-Weyl's theorem and 伪-Browder's theorem survive for 3脳3 upper triangular operator matrices on the Hilbert space.
鎽樿锛� 璁続鈭圔(H1),B鈭圔(H2),C鈭圔(H3)涓虹粰瀹氱殑涓変釜绠楀瓙,鐢∕(D,E,F)= 琛ㄧず涓�涓綔鐢ㄥ湪H1(?)H2(?)H3涓婄殑3脳3绠楀瓙鐭╅樀锛庢湰鏂囬鍏堢粰鍑哄瓨鍦ㄧ畻瀛怐鈭圔(H2,H1),E鈭圔(H3,H1),F鈭圔(H3,H2),浣垮緱M(D,E,F)涓轰笂鍗奆redholm绠楀瓙(涓嬪崐Fredholm绠楀瓙)鐨勫厖瑕佹潯浠讹紟鍚屾椂鐮旂┒浜�3脳3绠楀瓙鐭╅樀 M(D,E,F)鐨刉eyl瀹氱悊,伪-Weyl瀹氱悊,Browder瀹氱悊鍜屛�-Browder瀹氱悊锛�
鍏抽敭璇�: Browder瀹氱悊, 璋�, Weyl瀹氱悊
CLC Number:
Browder瀹氱悊:4453
Weyl瀹氱悊:4411
璋遍泦:4368
绠楀瓙鐭╅樀:4282
涓夎绠楀瓙:3918
鍏呰鏉′欢:2285
鏃犻檺缁�:1133
瀛ょ珛?
Xiao Hong CAO. Weyl's Theorem for 3脳3 Upper Triangular Operator Matrices[J]. Acta Mathematica Sinica, Chinese Series, 2006, 49(3): 529-538.
鏇瑰皬绾�;. 3脳3涓婁笁瑙掔畻瀛愮煩闃电殑Weyl鍨嬪畾鐞哰J]. 鏁板瀛︽姤, 2006, 49(3): 529-538.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://actamath.cjoe.ac.cn/Jwk_sxxb_cn/EN/10.12386/A2006sxxb0067
https://actamath.cjoe.ac.cn/Jwk_sxxb_cn/EN/Y2006/V49/I3/529