涓浗绉戝闄㈡暟瀛︿笌绯荤粺绉戝鐮旂┒闄㈡湡鍒婄綉

Acta Mathematica Sinica, Chinese Series 鈥衡�� 2006, Vol. 49 鈥衡�� Issue (3): 529-538.DOI: 10.12386/A2006sxxb0067

鈥� 璁烘枃 鈥� Previous Articles     Next Articles

Weyl's Theorem for 3脳3 Upper Triangular Operator Matrices

Xiao Hong CAO   

  1. Xiao Hong CAO College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, P. R. China
  • Received:2004-11-08 Revised:1900-01-01 Online:2006-05-15 Published:2006-05-15
  • Contact: Xiao Hong CAO

3脳3涓婁笁瑙掔畻瀛愮煩闃电殑Weyl鍨嬪畾鐞�

鏇瑰皬绾�;   

  1. 闄曡タ甯堣寖澶у鏁板涓庝俊鎭瀛﹀闄� 瑗垮畨 710062
  • 閫氳浣滆��: 鏇瑰皬绾�

Abstract: When A鈭圔(H1), B鈭圔(H2) and C鈭圔(H3) are given, we denote by M(D,E,F) an operator, acting on the Hilbert space H1H2H3, of the form M(D, E, F)= . In this paper, we give the necessary and sufficient condition for M(D,E,F) to be upper semi-Fredholm (lower semi-Fredholm) operator for some D鈭圔(H2,H1), E鈭圔(H3,H1), F鈭圔(H3,H2). Weyl type theorems are liable to fail for 2脳2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, 伪-Weyl's theorem and 伪-Browder's theorem survive for 3脳3 upper triangular operator matrices on the Hilbert space.

鎽樿锛� 璁続鈭圔(H1),B鈭圔(H2),C鈭圔(H3)涓虹粰瀹氱殑涓変釜绠楀瓙,鐢∕(D,E,F)= 琛ㄧず涓�涓綔鐢ㄥ湪H1(?)H2(?)H3涓婄殑3脳3绠楀瓙鐭╅樀锛庢湰鏂囬鍏堢粰鍑哄瓨鍦ㄧ畻瀛怐鈭圔(H2,H1),E鈭圔(H3,H1),F鈭圔(H3,H2),浣垮緱M(D,E,F)涓轰笂鍗奆redholm绠楀瓙(涓嬪崐Fredholm绠楀瓙)鐨勫厖瑕佹潯浠讹紟鍚屾椂鐮旂┒浜�3脳3绠楀瓙鐭╅樀 M(D,E,F)鐨刉eyl瀹氱悊,伪-Weyl瀹氱悊,Browder瀹氱悊鍜屛�-Browder瀹氱悊锛�

鍏抽敭璇�: Browder瀹氱悊, 璋�, Weyl瀹氱悊

CLC Number: